Do you want to publish a course? Click here

Fast Design Space Exploration of Nonlinear Systems: Part I

379   0   0.0 ( 0 )
 Added by Sanjai Narain
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

System design tools are often only available as blackboxes with complex nonlinear relationships between inputs and outputs. Blackboxes typically run in the forward direction: for a given design as input they compute an output representing system behavior. Most cannot be run in reverse to produce an input from requirements on output. Thus, finding a design satisfying a requirement is often a trial-and-error process without assurance of optimality. Finding designs concurrently satisfying multiple requirements is harder because designs satisfying individual requirements may conflict with each other. Compounding the hardness are the facts that blackbox evaluations can be expensive and sometimes fail to produce an output due to non-convergence of underlying numerical algorithms. This paper presents CNMA (Constrained optimization with Neural networks, MILP solvers and Active Learning), a new optimization method for blackboxes. It is conservative in the number of blackbox evaluations. Any designs it finds are guaranteed to satisfy all requirements. It is resilient to the failure of blackboxes to compute outputs. It tries to sample only the part of the design space relevant to solving the design problem, leveraging the power of neural networks, MILPs, and a new learning-from-failure feedback loop. The paper also presents parallel CNMA that improves the efficiency and quality of solutions over the sequential version, and tries to steer it away from local optima. CNMAs performance is evaluated for seven nonlinear design problems of 8 (2 problems), 10, 15, 36 and 60 real-valued dimensions and one with 186 binary dimensions. It is shown that CNMA improves the performance of stable, off-the-shelf implementations of Bayesian Optimization and Nelder Mead and Random Search by 1%-87% for a given fixed time and function evaluation budget. Note, that these implementations did not always return solutions.



rate research

Read More

Multi-objective optimization is a crucial matter in computer systems design space exploration because real-world applications often rely on a trade-off between several objectives. Derivatives are usually not available or impractical to compute and the feasibility of an experiment can not always be determined in advance. These problems are particularly difficult when the feasible region is relatively small, and it may be prohibitive to even find a feasible experiment, let alone an optimal one. We introduce a new methodology and corresponding software framework, HyperMapper 2.0, which handles multi-objective optimization, unknown feasibility constraints, and categorical/ordinal variables. This new methodology also supports injection of the user prior knowledge in the search when available. All of these features are common requirements in computer systems but rarely exposed in existing design space exploration systems. The proposed methodology follows a white-box model which is simple to understand and interpret (unlike, for example, neural networks) and can be used by the user to better understand the results of the automatic search. We apply and evaluate the new methodology to the automatic static tuning of hardware accelerators within the recently introduced Spatial programming language, with minimization of design run-time and compute logic under the constraint of the design fitting in a target field-programmable gate array chip. Our results show that HyperMapper 2.0 provides better Pareto fronts compared to state-of-the-art baselines, with better or competitive hypervolume indicator and with 8x improvement in sampling budget for most of the benchmarks explored.
Rule sets are often used in Machine Learning (ML) as a way to communicate the model logic in settings where transparency and intelligibility are necessary. Rule sets are typically presented as a text-based list of logical statements (rules). Surprisingly, to date there has been limited work on exploring visual alternatives for presenting rules. In this paper, we explore the idea of designing alternative representations of rules, focusing on a number of visual factors we believe have a positive impact on rule readability and understanding. The paper presents an initial design space for visualizing rule sets and a user study exploring their impact. The results show that some design factors have a strong impact on how efficiently readers can process the rules while having minimal impact on accuracy. This work can help practitioners employ more effective solutions when using rules as a communication strategy to understand ML models.
Building domain-specific accelerators for autonomous unmanned aerial vehicles (UAVs) is challenging due to a lack of systematic methodology for designing onboard compute. Balancing a computing system for a UAV requires considering both the cyber (e.g., sensor rate, compute performance) and physical (e.g., payload weight) characteristics that affect overall performance. Iterating over the many component choices results in a combinatorial explosion of the number of possible combinations: from 10s of thousands to billions, depending on implementation details. Manually selecting combinations of these components is tedious and expensive. To navigate the {cyber-physical design space} efficiently, we introduce emph{AutoPilot}, a framework that automates full-system UAV co-design. AutoPilot uses Bayesian optimization to navigate a large design space and automatically select a combination of autonomy algorithm and hardware accelerator while considering the cross-product effect of other cyber and physical UAV components. We show that the AutoPilot methodology consistently outperforms general-purpose hardware selections like Xavier NX and Jetson TX2, as well as dedicated hardware accelerators built for autonomous UAVs, across a range of representative scenarios (three different UAV types and three deployment environments). Designs generated by AutoPilot increase the number of missions on average by up to 2.25x, 1.62x, and 1.43x for nano, micro, and mini-UAVs respectively over baselines. Our work demonstrates the need for holistic full-UAV co-design to achieve maximum overall UAV performance and the need for automated flows to simplify the design process for autonomous cyber-physical systems.
To rapidly learn a new task, it is often essential for agents to explore efficiently -- especially when performance matters from the first timestep. One way to learn such behaviour is via meta-learning. Many existing methods however rely on dense rewards for meta-training, and can fail catastrophically if the rewards are sparse. Without a suitable reward signal, the need for exploration during meta-training is exacerbated. To address this, we propose HyperX, which uses novel reward bonuses for meta-training to explore in approximate hyper-state space (where hyper-states represent the environment state and the agents task belief). We show empirically that HyperX meta-learns better task-exploration and adapts more successfully to new tasks than existing methods.
A major hurdle to the deployment of quantum linear systems algorithms and recent quantum simulation algorithms lies in the difficulty to find inexpensive reversible circuits for arithmetic using existing hand coded methods. Motivated by recent advances in reversible logic synthesis, we synthesize arithmetic circuits using classical design automation flows and tools. The combination of classical and reversible logic synthesis enables the automatic design of large components in reversible logic starting from well-known hardware description languages such as Verilog. As a prototype example for our approach we automatically generate high quality networks for the reciprocal $1/x$, which is necessary for quantum linear systems algorithms.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا