No Arabic abstract
We discuss several aspects of a generalization of the Chern-Simons action containing the pseudo-differential operator$sqrt{-Box}$, which we shall call pseudo Chern-Simons (PCS). Firstly, we derive the PCS from the bosonization of free massive Dirac particles in (2+1)D in the limit when $m^2ll p^2$, where $m$ is the fermion mass and $p$ is its momentum. In this regime, the whole bosonized action also has a modified Maxwell term, involving the same pseudo-differential operator. Furthermore, the large-mass $m^2gg p^2$ regime is also considered. We also investigate the main effects of the PCS term into the Pseudo quantum electrodynamics (PQED), which describes the electromagnetic interactions between charged particles in (2+1)D. We show that the massless gauge field of PQED becomes massive in the presence of a PCS term, without the need of a Higgs mechanism. In the nonrelativistic limit, we show that the static potential has a repulsive term (given by the Coulomb potential) and an attractive part (given by a sum of special functions), whose competition generates bound states of particles with the same charge. Having in mind two-dimensional materials, we also conclude that the presence of a PCS term does not affect the renormalization either of the Fermi velocity and of the band gap in a Dirac-like material.
We consider $3$-dimensional conformal field theories with $U(N)_{kappa}$ Chern Simons gauge fields coupled to bosonic and fermionic matter fields transforming in the fundamental representation of the gauge group. In these CFTs, we compute in the tHooft large $N$ limit and to all orders in the tHooft coupling $lambda= N/ kappa$, the thermal two-point correlation functions of the spin $s=0$, $s=1$ and $s=2$ gauge invariant conformal primary operators. These are the lowest dimension single trace scalar, the $U(1)$ current and the stress tensor operators respectively. Our results furnish additional tests of the conjectured bosonization dualities in these theories at finite temperature.
We demonstrate generation of the two-dimensional Chern-Simons-like Lorentz-breaking action via an appropriate Lorentz-breaking coupling of scalar and spinor fields at zero as well as at the finite temperature and via the noncommutative fields method and study the dispersion relations corresponding to this action.
We study a nonlocal theory that combines both the Pseudo quantum electrodynamics (PQED) and Chern-Simons actions among two-dimensional electrons. In the static limit, we conclude that the competition of these two interactions yields a Coulomb potential with a screened electric charge given by $e^2/(1+theta^2)$, where $theta$ is the dimensionless Chern-Simons parameter. This could be useful for describing the substrate interaction with two-dimensional materials and the doping dependence of the dielectric constant in graphene. In the dynamical limit, we calculate the effective current-current action of the model considering Dirac electrons. We show that this resembles the electromagnetic and statistical interactions, but with two different overall constants, given by $e^2/(1+theta^2)$ and $e^2theta/(1+theta^2)$. Therefore, the $theta$-parameter does not provide a topological mass for the Gauge field in PQED, which is a relevant difference in comparison with quantum electrodynamics. Thereafter, we apply the one-loop perturbation theory in our model. Within this approach, we calculate the electron self-energy, the electron renormalized mass, the corrected gauge-field propagator, and the renormalized Fermi velocity for both high- and low-speed limits, using the renormalization group. In particular, we obtain a maximum value of the renormalized mass for $thetaapprox 0.36$. This behavior is an important signature of the model and relations with doping control of band gap size are also discussed in the conclusions.
We study dynamical symmetry breaking in three-dimensional QED with a Chern-Simons (CS) term, considering the screening effect of $N$ flavor fermions. We find a new phase of the vacuum, in which both the fermion mass and a magnetic field are dynamically generated, when the coefficient of the CS term $kappa$ equals $N e^2/4 pi$. The resultant vacuum becomes the finite-density state half-filled by fermions. For $kappa=N e^2/2 pi$, we find the fermion remains massless and only the magnetic field is induced. For $kappa=0$, spontaneous magnetization does not occur and should be regarded as an external field.
We analyze the Chern-Simons-like term generation in the CPT-odd Lorentz-violating Yang-Mills theory interacting with fermions. Moreover, we study the anomalies of this model as well as its quantum stability. The whole analysis is performed within the algebraic renormalization theory, which is independent of the renormalization scheme. In addition, all results are valid to all orders in perturbation theory. We find that the Chern-Simons-like term is not generated by radiative corrections, just like its Abelian version. Additionally, the model is also free of gauge anomalies and quantum stable.