Do you want to publish a course? Click here

Lorentz-violating Yang-Mills theory: discussing the Chern-Simons-like term generation

111   0   0.0 ( 0 )
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We analyze the Chern-Simons-like term generation in the CPT-odd Lorentz-violating Yang-Mills theory interacting with fermions. Moreover, we study the anomalies of this model as well as its quantum stability. The whole analysis is performed within the algebraic renormalization theory, which is independent of the renormalization scheme. In addition, all results are valid to all orders in perturbation theory. We find that the Chern-Simons-like term is not generated by radiative corrections, just like its Abelian version. Additionally, the model is also free of gauge anomalies and quantum stable.



rate research

Read More

300 - E. Passos , A. Yu. Petrov 2008
We demonstrate generation of the two-dimensional Chern-Simons-like Lorentz-breaking action via an appropriate Lorentz-breaking coupling of scalar and spinor fields at zero as well as at the finite temperature and via the noncommutative fields method and study the dispersion relations corresponding to this action.
The issue intensively claimed in the literature on the generation of a CPT-odd and Lorentz violating Chern-Simons-like term by radiative corrections owing to a CPT violating interaction -- the axial coupling of fermions with a constant vector field $b_m$ -- is mistaken. The presence of massless gauge field triggers IR divergences that might show up from the UV subtractions, therefore, so as to deal with the (actual physical) IR divergences, the Lowenstein-Zimmermann subtraction scheme, in the framework of BPHZL renormalization method, has to be adopted. The proof on the non generation of such a Chern-Simons-like term is done, independent of any kind of regularization scheme, at all orders in perturbation theory.
The radiative induction of the CPT and Lorentz violating Chern-Simons (CS) term is reassessed. The massless and massive models are studied. Special attention is given to the preservation of gauge symmetry at higher orders in the background vector $b_mu$ when radiative corrections are considered. Both the study of the odd and even parity sectors of the complete vacuum polarization tensor at one-loop order and a non-perturbative analysis show that this symmetry must be preserved by the quantum corrections. As a complement we obtain that transversality of the polarization tensor does not fix the value of the coefficient of the induced CS term.
We determine the dimension of the moduli space of non-Abelian vortices in Yang-Mills-Chern-Simons-Higgs theory in 2+1 dimensions for gauge groups $G=U(1)times G$ with $G$ being an arbitrary semi-simple group. The calculation is carried out using a Callias-type index theorem, the moduli matrix approach and a D-brane setup in Type IIB string theory. We prove that the index theorem gives the number of zeromodes or moduli of the non-Abelian vortices, extend the moduli matrix approach to the Yang-Mills-Chern-Simons-Higgs theory and finally derive the effective Lagrangian of Collie and Tong using string theory.
By constructing the configuration of D3-branes with D(-1)-branes as D-instantons, we study the three-dimensional Yang-Mills Chern-Simons theory in holography. Due to the presence of the D-instantons, the D7-branes with discrepant embedding functions are able to be introduced in order to include the fundamental fermions (as flavors) and the Chern-Simons term (at very low energy) in the dual theory. The vacuum structure at zero temperature is studied in the soliton background and it illustrates the topological phase transition in the presence of instantons. Moreover, since the confinement/deconfinement phase transition could be holographically identified as the Hawking-Page transition in the bulk, we accordingly calculate the critical temperature of the deconfinement phase transition by collecting the bulk onshell action as the thermodynamical free energy. On the other hand, we evaluate the difference of the entanglement entropy in slab configuration by using the RT formula since the confinement may also be characterized by the entanglement entropy. Altogether we find the behavior of the critical temperature is in qualitative agreement with the behavior of the critical length determined by the entanglement entropy which implies the entanglement entropy could indeed be a character of the confinement in our setup and the D3-D(-1) system would be a remarkable approach to study the three-dimensional gauge theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا