Do you want to publish a course? Click here

Optical trapping with structured light

284   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical trapping describes the interaction between light and matter to manipulate micro-objects through momentum transfer. In the case of 3D trapping with a single beam, this is termed optical tweezers. Optical tweezers are a powerful and non-invasive tool for manipulating small objects, which have become indispensable in many fields, including physics, biology, soft condensed matter, amongst others. In the early days, optical trapping were typically used with a single Gaussian beam. In recent years, we have witnessed the rapid progress in the use of structured light beams with customized phase, amplitude and polarization in optical trapping. Unusual beam properties, such as phase singularities on-axis, propagation invariant nature, have opened up novel capabilities to the study of micromanipulation in liquid, air and vacuum. In this review, we summarize the recent advances in the field of optical trapping using structured light beams.



rate research

Read More

Materials of which the optical response is determined by their structure are of much interest both for their fundamental properties and applications. Examples range from simple gratings to photonic crystals. Obtaining control over the optical properties is of crucial importance in this context, and it is often attempted by electro-optical effect or by using magnetic fields. In this paper, we introduce the use of light to switch and tune the optical response of a structured material, exploiting a physical deformation induced by light itself. In this new strategy, light drives an elastic reshaping, which leads to different spectral properties and hence to a change in the optical response. This is made possible by the use of liquid crystalline networks structured by Direct Laser Writing. As a proof of concept, a grating structure with sub-millisecond time-response is demonstrated for optical beam steering exploiting an optically induced reversible shape-change. Experimental observations are combined with finite-element modeling to understand the actuation process dynamics and to obtain information on how to tune the time and the power response of this technology. This optical beam steerer serves as an example for achieving full optical control of light in broad range of structured optical materials.
369 - C. Liu , A. Di Falco , D. Molinari 2012
Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab-initio simulations and experiments in photonic crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase with the equipartition of energy among all degrees of freedom of the chaotic resonator, i.e. the cavity modes, which is evident from the convergence of their lifetime towards a single value. A compelling illustration of the theory is provided by demonstrating enhanced absorption in deformed polystyrene microspheres.
Standard optical tweezers rely on optical forces that arise when a focused laser beam interacts with a microscopic particle: scattering forces, which push the particle along the beam direction, and gradient forces, which attract it towards the high-intensity focal spot. Importantly, the incoming laser beam is not affected by the particle position because the particle is emph{outside} the laser cavity. Here, we demonstrate that emph{intracavity nonlinear feedback forces} emerge when the particle is placed emph{inside} the optical cavity, resulting in orders-of-magnitude higher confinement along the three axes per unit laser intensity on the sample. We present a toy model that intuitively explains how the microparticle position and the laser power become nonlinearly coupled: The loss of the laser cavity depends on the particle position due to scattering, so the laser intensity grows whenever the particle tries to escape. This scheme allows trapping at very low numerical apertures and reduces the laser intensity to which the particle is exposed by two orders of magnitude compared to a standard 3D optical tweezers. We experimentally realize this concept by optically trapping microscopic polystyrene and silica particles inside the ring cavity of a fiber laser. These results are highly relevant for many applications requiring manipulation of samples that are subject to photodamage, such as in biological systems and nanosciences.
We introduce a microscopy technique that facilitates the prediction of spatial features of chirality of nanoscale samples by exploiting photo-induced optical force exerted on an achiral tip in the vicinity of the test specimen. The tip-sample interactive system is illuminated by structured light to probe both the transverse and longitudinal (with respect to the beam propagation direction) components of the sample magnetoelectric polarizability as the manifestation of its sense of handedness, i.e., chirality. We specifically prove that although circularly polarized waves are adequate to detect the transverse polarizability components of the sample, they are unable to probe the longitudinal component. To overcome this inadequacy, we propose a judiciously engineered combination of radially and azimuthally polarized beams, as optical vortices possessing pure longitudinal electric and magnetic field components along their vortex axis, respectively, hence probing longitudinal chirality. The proposed technique may benefit branches of science like stereochemistry, biomedicine, physical and material science, and pharmaceutics
The structural versatility of light underpins an outstanding collection of optical phenomena where both geometrical and topological states of light can dictate how matter will respond or display. Light possesses multiple degrees of freedom such as amplitude, and linear, spin angular, and orbital angular momenta, but the ability to adaptively engineer the spatio-temporal distribution of all these characteristics is primarily curtailed by technologies used to impose any desired structure to light. We describe a foundational demonstration that examines a laser architecture offering integrated spatio-temporal field control and programmability, thereby presenting unique opportunities for generating light by design to exploit its topology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا