No Arabic abstract
Standard optical tweezers rely on optical forces that arise when a focused laser beam interacts with a microscopic particle: scattering forces, which push the particle along the beam direction, and gradient forces, which attract it towards the high-intensity focal spot. Importantly, the incoming laser beam is not affected by the particle position because the particle is emph{outside} the laser cavity. Here, we demonstrate that emph{intracavity nonlinear feedback forces} emerge when the particle is placed emph{inside} the optical cavity, resulting in orders-of-magnitude higher confinement along the three axes per unit laser intensity on the sample. We present a toy model that intuitively explains how the microparticle position and the laser power become nonlinearly coupled: The loss of the laser cavity depends on the particle position due to scattering, so the laser intensity grows whenever the particle tries to escape. This scheme allows trapping at very low numerical apertures and reduces the laser intensity to which the particle is exposed by two orders of magnitude compared to a standard 3D optical tweezers. We experimentally realize this concept by optically trapping microscopic polystyrene and silica particles inside the ring cavity of a fiber laser. These results are highly relevant for many applications requiring manipulation of samples that are subject to photodamage, such as in biological systems and nanosciences.
Optical trapping describes the interaction between light and matter to manipulate micro-objects through momentum transfer. In the case of 3D trapping with a single beam, this is termed optical tweezers. Optical tweezers are a powerful and non-invasive tool for manipulating small objects, which have become indispensable in many fields, including physics, biology, soft condensed matter, amongst others. In the early days, optical trapping were typically used with a single Gaussian beam. In recent years, we have witnessed the rapid progress in the use of structured light beams with customized phase, amplitude and polarization in optical trapping. Unusual beam properties, such as phase singularities on-axis, propagation invariant nature, have opened up novel capabilities to the study of micromanipulation in liquid, air and vacuum. In this review, we summarize the recent advances in the field of optical trapping using structured light beams.
The superposition of a Gaussian mode and a Laguerre-Gauss mode with $ell=0,p eq0$ generates the so-called bottle beam: a dark focus surrounded by a bright region. In this paper, we theoretically explore the use of bottle beams as an optical trap for dielectric spheres with a refractive index smaller than that of their surrounding medium. The forces acting on a small particle are derived within the dipole approximation and used to simulate the Brownian motion of the particle in the trap. The intermediate regime of particle size is studied numerically and it is found that stable trapping of larger dielectric particles is also possible. Based on the results of the intermediate regime analysis, an experiment aimed at trapping living organisms in the dark focus of a bottle beam is proposed.
We develop a green light source with low spatial coherence via intracavity frequency doubling of a solid-state degenerate laser. The second harmonic emission supports many more transverse modes than the fundamental emission, and exhibit lower spatial coherence. A strong suppression of speckle formation is demonstrated for both fundamental and second harmonic beams. Using the green emission for fluorescence excitation, we show the coherent artifacts are removed from the full-field fluorescence images. The high power, low spatial coherence and good directionality makes the green degenerate laser an attractive illumination source for parallel imaging and projection display.
Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab-initio simulations and experiments in photonic crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase with the equipartition of energy among all degrees of freedom of the chaotic resonator, i.e. the cavity modes, which is evident from the convergence of their lifetime towards a single value. A compelling illustration of the theory is provided by demonstrating enhanced absorption in deformed polystyrene microspheres.
Optical dipole-traps are used in various scientific fields, including classical optics, quantum optics and biophysics. Here, we propose and implement a dipole-trap for nanoparticles that is based on focusing from the full solid angle with a deep parabolic mirror. The key aspect is the generation of a linear-dipole mode which is predicted to provide a tight trapping potential. We demonstrate the trapping of rod-shaped nanoparticles and validate the trapping frequencies to be on the order of the expected ones. The described realization of an optical trap is applicable for various other kinds of solid-state targets. The obtained results demonstrate the feasibility of optical dipole-traps which simultaneously provide high trap stiffness and allow for efficient interaction of light and matter in free space.