No Arabic abstract
Optical unitary converter (OUC) that can convert a set of N mutually orthogonal optical modes into another set of arbitrary N orthogonal modes is expected to be the key device in diverse applications, including the optical communication, deep learning, and quantum computing. While various types of OUC have been demonstrated on photonic integration platforms, its sensitivity against a slight deviation in the waveguide dimension has been the crucial issue in scaling N. Here, we demonstrate that an OUC based on the concept of multi-plane light conversion (MPLC) shows outstanding robustness against waveguide deviations. Moreover, it becomes more and more insensitive to fabrication errors as we increase N, which is in clear contrast to the conventional OUC architecture, composed of 2 $times$ 2 Mach-Zehnder interferometers. The physical origin behind this unique robustness and scalability is studied by considering a generalized OUC configuration. As a result, we reveal that the number of coupled modes in each stage plays an essential role in determining the sensitivity of the entire OUC. The maximal robustness is attained when all-to-all-coupled interferometers are employed, which are naturally implemented in MPLC-OUC.
Optical phased arrays (OPAs) implemented in integrated photonic circuits could enable a variety of 3D sensing, imaging, illumination, and ranging applications, and their convergence in new LIDAR technology. However, current integrated OPA approaches do not scale - in control complexity, power consumption, and optical efficiency - to the large aperture sizes needed to support medium to long range LIDAR. We present the serpentine optical phased array (SOPA), a new OPA concept that addresses these fundamental challenges and enables architectures that scale up to large apertures. The SOPA is based on a serially interconnected array of low-loss grating waveguides and supports fully passive, two-dimensional (2D) wavelength-controlled beam steering. A fundamentally space-efficient design that folds the feed network into the aperture also enables scalable tiling of SOPAs into large apertures with a high fill-factor. We experimentally demonstrate the first SOPA, using a 1450 - 1650 nm wavelength sweep to produce 16,500 addressable spots in a 27x610 array. We also demonstrate, for the first time, far-field interference of beams from two separate OPAs on a single silicon photonic chip, as an initial step towards long-range computational imaging LIDAR based on novel active aperture synthesis schemes.
Waves that are perfectly confined in the continuous spectrum of radiating waves without interaction with them are known as bound states in the continuum (BICs). Despite recent discoveries of BICs in nanophotonics, full routing and control of BICs are yet to be explored. Here, we experimentally demonstrate BICs in a fundamentally new photonic architecture by patterning a low-refractive-index material on a high-refractive-index substrate, where dissipation to the substrate continuum is eliminated by engineering the geometric parameters. Pivotal BIC-based photonic components are demonstrated, including waveguides, microcavities, directional couplers, and modulators. Therefore, this work presents the critical step of photonic integrated circuits in the continuum, and enables the exploration of new single-crystal materials on an integrated photonic platform without the fabrication challenges of patterning the single-crystal materials. The demonstrated lithium niobate platform will facilitate development of functional photonic integrated circuits for optical communications, nonlinear optics at the single photon level as well as scalable photonic quantum information processors.
Optical beamforming networks (OBFNs) based on optical true time delay lines (OTTDLs) are well-known as the promising candidate to solve the bandwidth limitation of traditional electronic phased array antennas (PAAs) due to beam squinting. Here we report the first monolithic 1x8 microwave photonic beamformer based on switchable OTTDLs on the silicon-on-insulator platform. The chip consists of a modulator, an eight-channel OBFN, and 8 photodetectors, which includes hundreds of active and passive components in total. It has a wide operating bandwidth from 8 to 18 GHz, which is almost two orders larger than that of electronic PAAs. The beam can be steered to 31 distinguishable angles in the range of -75.51{deg} to 75.64{deg} based on the beam pattern calculation with the measured RF response. The response time for beam steering is 56 {mu}s. These results represent a significant step towards the realization of integrated microwave photonic beamformers that can satisfy compact size and low power consumption requirements for the future radar and wireless communication systems.
Conventional computing architectures have no known efficient algorithms for combinatorial optimization tasks, which are encountered in fundamental areas and real-world practical problems including logistics, social networks, and cryptography. Physical machines have recently been proposed and implemented as an alternative to conventional exact and heuristic solvers for the Ising problem, one such optimization task that requires finding the ground state spin configuration of an arbitrary Ising graph. However, these physical approaches usually suffer from decreased ground state convergence probability or universality for high edge-density graphs or arbitrary graph weights, respectively. We experimentally demonstrate a proof-of-principle integrated nanophotonic recurrent Ising sampler (INPRIS) capable of converging to the ground state of various 4-spin graphs with high probability. The INPRIS exploits experimental physical noise as a resource to speed up the ground state search. By injecting additional extrinsic noise during the algorithm iterations, the INPRIS explores larger regions of the phase space, thus allowing one to probe noise-dependent physical observables. Since the recurrent photonic transformation that our machine imparts is a fixed function of the graph problem, and could thus be implemented with optoelectronic architectures that enable GHz clock rates (such as passive or non-volatile photonic circuits that do not require reprogramming at each iteration), our work paves a way for orders-of-magnitude speedups in exploring the solution space of combinatorially hard problems.
Atomic-level imperfections play an increasingly critical role in nanophotonic device performance. However, it remains challenging to accurately characterize the sidewall roughness with sub-nanometer resolution and directly correlate this roughness with device performance. We have developed a method that allows us to measure the sidewall roughness of waveguides made of any material (including dielectrics) using the high resolution of atomic force microscopy. We illustrate this method by measuring state-of-the-art photonic devices made of silicon nitride. We compare the roughness of devices fabricated using both DUV photo-lithography and electron-beam lithography for two different etch processes. To correlate roughness with device performance we describe what we call a new Payne-Lacey Bending model, which adds a correction factor to the widely used Payne-Lacey model so that losses in resonators and waveguides with bends can be accurately predicted given the sidewall roughness, waveguide width and bending radii. Having a better way to measure roughness and use it to predict device performance can allow researchers and engineers to optimize fabrication for state-of-the-art photonics using many materials.