Do you want to publish a course? Click here

CGPart: A Part Segmentation Dataset Based on 3D Computer Graphics Models

137   0   0.0 ( 0 )
 Added by Qing Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Part segmentations provide a rich and detailed part-level description of objects, but their annotation requires an enormous amount of work. In this paper, we introduce CGPart, a comprehensive part segmentation dataset that provides detailed annotations on 3D CAD models, synthetic images, and real test images. CGPart includes $21$ 3D CAD models covering $5$ vehicle categories, each with detailed per-mesh part labeling. The average number of parts per category is $24$, which is larger than any existing datasets for part segmentation on vehicle objects. By varying the rendering parameters, we make $168,000$ synthetic images from these CAD models, each with automatically generated part segmentation ground-truth. We also annotate part segmentations on $200$ real images for evaluation purposes. To illustrate the value of CGPart, we apply it to image part segmentation through unsupervised domain adaptation (UDA). We evaluate several baseline methods by adapting top-performing UDA algorithms from related tasks to part segmentation. Moreover, we introduce a new method called Geometric-Matching Guided domain adaptation (GMG), which leverages the spatial object structure to guide the knowledge transfer from the synthetic to the real images. Experimental results demonstrate the advantage of our new algorithm and reveal insights for future improvement. We will release our data and code.



rate research

Read More

184 - W.-Y. Hong , C.-L. Kao , Y.-H. Kuo 2020
Computer-assisted surgery has been developed to enhance surgery correctness and safety. However, researchers and engineers suffer from limited annotated data to develop and train better algorithms. Consequently, the development of fundamental algorithms such as Simultaneous Localization and Mapping (SLAM) is limited. This article elaborates on the efforts of preparing the dataset for semantic segmentation, which is the foundation of many computer-assisted surgery mechanisms. Based on the Cholec80 dataset [3], we extracted 8,080 laparoscopic cholecystectomy image frames from 17 video clips in Cholec80 and annotated the images. The dataset is named CholecSeg8K and its total size is 3GB. Each of these images is annotated at pixel-level for thirteen classes, which are commonly founded in laparoscopic cholecystectomy surgery. CholecSeg8k is released under the license CC BY- NC-SA 4.0.
Semantic segmentation is an important task in computer vision, from which some important usage scenarios are derived, such as autonomous driving, scene parsing, etc. Due to the emphasis on the task of video semantic segmentation, we participated in this competition. In this report, we briefly introduce the solutions of team BetterThing for the ICCV2021 - Video Scene Parsing in the Wild Challenge. Transformer is used as the backbone for extracting video frame features, and the final result is the aggregation of the output of two Transformer models, SWIN and VOLO. This solution achieves 57.3% mIoU, which is ranked 3rd place in the Video Scene Parsing in the Wild Challenge.
Human body part segmentation refers to the task of predicting the semantic segmentation mask for each body part. Fully supervised body part segmentation methods achieve good performances but require an enormous amount of effort to annotate part masks for training. In contrast to high annotation costs needed for a limited number of part mask annotations, a large number of weak labels such as poses and full body masks already exist and contain relevant information. Motivated by the possibility of using existing weak labels, we propose the first weakly supervised body part segmentation framework. The core idea is first converting the sparse weak labels such as keypoints to the initial estimate of body part masks, and then iteratively refine the part mask predictions. We name the initial part masks estimated from poses the part priors. With sufficient extra weak labels, our weakly supervised framework achieves a comparable performance (62.0% mIoU) to the fully supervised method (63.6% mIoU) on the Pascal-Person-Part dataset. Furthermore, in the extended semi-supervised setting, the proposed framework outperforms the state-of-art methods. Moreover, we extend our proposed framework to other keypoint-supervised part segmentation tasks such as face parsing.
63 - Xu Cao , Katashi Nagao 2018
This paper introduces DensePoint, a densely sampled and annotated point cloud dataset containing over 10,000 single objects across 16 categories, by merging different kind of information from two existing datasets. Each point cloud in DensePoint contains 40,000 points, and each point is associated with two sorts of information: RGB value and part annotation. In addition, we propose a method for point cloud colorization by utilizing Generative Adversarial Networks (GANs). The network makes it possible to generate colours for point clouds of single objects by only giving the point cloud itself. Experiments on DensePoint show that there exist clear boundaries in point clouds between different parts of an object, suggesting that the proposed network is able to generate reasonably good colours. Our dataset is publicly available on the project page.
Electron microscopy (EM) enables the reconstruction of neural circuits at the level of individual synapses, which has been transformative for scientific discoveries. However, due to the complex morphology, an accurate reconstruction of cortical axons has become a major challenge. Worse still, there is no publicly available large-scale EM dataset from the cortex that provides dense ground truth segmentation for axons, making it difficult to develop and evaluate large-scale axon reconstruction methods. To address this, we introduce the AxonEM dataset, which consists of two 30x30x30 um^3 EM image volumes from the human and mouse cortex, respectively. We thoroughly proofread over 18,000 axon instances to provide dense 3D axon instance segmentation, enabling large-scale evaluation of axon reconstruction methods. In addition, we densely annotate nine ground truth subvolumes for training, per each data volume. With this, we reproduce two published state-of-the-art methods and provide their evaluation results as a baseline. We publicly release our code and data at https://connectomics-bazaar.github.io/proj/AxonEM/index.html to foster the development of advanced methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا