Do you want to publish a course? Click here

CholecSeg8k: A Semantic Segmentation Dataset for Laparoscopic Cholecystectomy Based on Cholec80

185   0   0.0 ( 0 )
 Added by Chi-Sheng Shih
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Computer-assisted surgery has been developed to enhance surgery correctness and safety. However, researchers and engineers suffer from limited annotated data to develop and train better algorithms. Consequently, the development of fundamental algorithms such as Simultaneous Localization and Mapping (SLAM) is limited. This article elaborates on the efforts of preparing the dataset for semantic segmentation, which is the foundation of many computer-assisted surgery mechanisms. Based on the Cholec80 dataset [3], we extracted 8,080 laparoscopic cholecystectomy image frames from 17 video clips in Cholec80 and annotated the images. The dataset is named CholecSeg8K and its total size is 3GB. Each of these images is annotated at pixel-level for thirteen classes, which are commonly founded in laparoscopic cholecystectomy surgery. CholecSeg8k is released under the license CC BY- NC-SA 4.0.



rate research

Read More

Semantic segmentation has been one of the leading research interests in computer vision recently. It serves as a perception foundation for many fields, such as robotics and autonomous driving. The fast development of semantic segmentation attributes enormously to the large scale datasets, especially for the deep learning related methods. There already exist several semantic segmentation datasets for comparison among semantic segmentation methods in complex urban scenes, such as the Cityscapes and CamVid datasets, where the side views of the objects are captured with a camera mounted on the driving car. There also exist semantic labeling datasets for the airborne images and the satellite images, where the top views of the objects are captured. However, only a few datasets capture urban scenes from an oblique Unmanned Aerial Vehicle (UAV) perspective, where both of the top view and the side view of the objects can be observed, providing more information for object recognition. In this paper, we introduce our UAVid dataset, a new high-resolution UAV semantic segmentation dataset as a complement, which brings new challenges, including large scale variation, moving object recognition and temporal consistency preservation. Our UAV dataset consists of 30 video sequences capturing 4K high-resolution images in slanted views. In total, 300 images have been densely labeled with 8 classes for the semantic labeling task. We have provided several deep learning baseline methods with pre-training, among which the proposed Multi-Scale-Dilation net performs the best via multi-scale feature extraction. Our UAVid website and the labeling tool have been published https://uavid.nl/.
Collecting annotated data for semantic segmentation is time-consuming and hard to scale up. In this paper, we for the first time propose a unified framework, termed as Multi-Dataset Pretraining, to take full advantage of the fragmented annotations of different datasets. The highlight is that the annotations from different domains can be efficiently reused and consistently boost performance for each specific domain. This is achieved by first pretraining the network via the proposed pixel-to-prototype contrastive loss over multiple datasets regardless of their taxonomy labels, and followed by fine-tuning the pretrained model over specific dataset as usual. In order to better model the relationship among images and classes from different datasets, we extend the pixel level embeddings via cross dataset mixing and propose a pixel-to-class sparse coding strategy that explicitly models the pixel-class similarity over the manifold embedding space. In this way, we are able to increase intra-class compactness and inter-class separability, as well as considering inter-class similarity across different datasets for better transferability. Experiments conducted on several benchmarks demonstrate its superior performance. Notably, MDP consistently outperforms the pretrained models over ImageNet by a considerable margin, while only using less than 10% samples for pretraining.
With the development of underwater object grabbing technology, underwater object recognition and segmentation of high accuracy has become a challenge. The existing underwater object detection technology can only give the general position of an object, unable to give more detailed information such as the outline of the object, which seriously affects the grabbing efficiency. To address this problem, we label and establish the first underwater semantic segmentation dataset of real scene(DUT-USEG:DUT Underwater Segmentation Dataset). The DUT- USEG dataset includes 6617 images, 1487 of which have semantic segmentation and instance segmentation annotations, and the remaining 5130 images have object detection box annotations. Based on this dataset, we propose a semi-supervised underwater semantic segmentation network focusing on the boundaries(US-Net: Underwater Segmentation Network). By designing a pseudo label generator and a boundary detection subnetwork, this network realizes the fine learning of boundaries between underwater objects and background, and improves the segmentation effect of boundary areas. Experiments show that the proposed method improves by 6.7% in three categories of holothurian, echinus, starfish in DUT-USEG dataset, and achieves state-of-the-art results. The DUT- USEG dataset will be released at https://github.com/baxiyi/DUT-USEG.
Semantic segmentation is an important task in computer vision, from which some important usage scenarios are derived, such as autonomous driving, scene parsing, etc. Due to the emphasis on the task of video semantic segmentation, we participated in this competition. In this report, we briefly introduce the solutions of team BetterThing for the ICCV2021 - Video Scene Parsing in the Wild Challenge. Transformer is used as the backbone for extracting video frame features, and the final result is the aggregation of the output of two Transformer models, SWIN and VOLO. This solution achieves 57.3% mIoU, which is ranked 3rd place in the Video Scene Parsing in the Wild Challenge.
Part segmentations provide a rich and detailed part-level description of objects, but their annotation requires an enormous amount of work. In this paper, we introduce CGPart, a comprehensive part segmentation dataset that provides detailed annotations on 3D CAD models, synthetic images, and real test images. CGPart includes $21$ 3D CAD models covering $5$ vehicle categories, each with detailed per-mesh part labeling. The average number of parts per category is $24$, which is larger than any existing datasets for part segmentation on vehicle objects. By varying the rendering parameters, we make $168,000$ synthetic images from these CAD models, each with automatically generated part segmentation ground-truth. We also annotate part segmentations on $200$ real images for evaluation purposes. To illustrate the value of CGPart, we apply it to image part segmentation through unsupervised domain adaptation (UDA). We evaluate several baseline methods by adapting top-performing UDA algorithms from related tasks to part segmentation. Moreover, we introduce a new method called Geometric-Matching Guided domain adaptation (GMG), which leverages the spatial object structure to guide the knowledge transfer from the synthetic to the real images. Experimental results demonstrate the advantage of our new algorithm and reveal insights for future improvement. We will release our data and code.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا