No Arabic abstract
We study the interplay between Mott physics, driven by Coulomb repulsion U, and Hund physics, driven by Hunds coupling J, for a minimal model for Hund metals, the orbital-symmetric three-band Hubbard-Hund model (3HHM) for a lattice filling of 1/3. Hund-correlated metals are characterized by spin-orbital separation (SOS), a Hunds-rule-induced two-stage Kondo-type screening process, in which spin screening occurs at much lower energy scales than orbital screening. By contrast, in Mott-correlated metals, lying close to the phase boundary of a metal-insulator transition, the SOS window becomes negligibly small and the Hubbard bands are well separated. Using dynamical mean-field theory and the numerical renormalization group as real-frequency impurity solver, we identify numerous fingerprints distinguishing Hundness from Mottness in the temperature dependence of various physical quantities. These include ARPES-type spectra, the local self-energy, static local orbital and spin susceptibilities, resistivity, thermopower, and lattice and impurity entropies. Our detailed description of the behavior of these quantities within the context of a simple model Hamiltonian will be helpful for distinguishing Hundness from Mottness in experimental and theoretical studies of real materials.
An antiferromagnetic Hund coupling in multiorbital Hubbard systems induces orbital freezing and an associated superconducting instability, as well as unique composite orders in the case of an odd number of orbitals. While the rich phase diagram of the half-filled three-orbital model has recently been explored in detail, the properties of the doped system remain to be clarified. Here, we complement the previous studies by computing the entropy of the half-filled model, which exhibits an increase in the orbital-frozen region, and a suppression in the composite ordered phase. The doping dependent phase diagram shows that the composite ordered state can be stabilized in the doped Mott regime, if conventional electronic orders are suppressed by frustration. While antiferro orbital order dominates the filling range $2lesssim n le 3$, and ferro orbital order the strongly interacting region for $1lesssim n < 2$, we find superconductivity with a remarkably high $T_c$ around $n=1.5$ (quarter filling). Also in the doped system, there is a close connection between the orbital freezing crossover and superconductivity.
We study the dynamics of photo-induced charge carriers in realistic models of LaVO3 and YTiO3 polar heterostructures. It is shown that two types of impact ionization processes contribute to the carrier multiplication in these strongly correlated multi-orbital systems: The first mechanism involves local spin state transitions, while the second mechanism involves the scattering of high kinetic energy carriers. Both processes act on the 10 fs timescale and play an important role in the harvesting of high energy photons in solar cell applications. As a consequence, the optimal gap size for Mott solar cells is substantially smaller than for semiconductor devices.
Motivated by the recent discovery of superconductivity in infinite-layer nickelates RE$_{1-delta}$Sr$_delta$NiO$_2$ (RE$=$Nd, Pr), we study the role of Hunds coupling $J$ in a quarter-filled two-orbital Hubbard model which has been on the periphery of the attention. A region of negative effective Coulomb interaction of this model is revealed to be differentiated from three- and five-orbital models in their typical Hunds metal active fillings. We identify distinctive regimes including four different correlated metals, one of which stems from the proximity to a Mott insulator while the other three, which we call intermediate metal, weak Hunds metal, and valence-skipping metal, from the effect of $J$ being away from Mottness. Defining criteria characterizing these metals are suggested, establishing the existence of Hunds metallicity in two-orbital systems.
In this work, we report the pressure dependence of the effective Coulomb interaction parameters (Hubbard U) in paramagnetic NiO within the constrained random phase approximation (cRPA). We consider five different low energy models starting from the most expensive one that treats both Ni-d and O-p states as correlated orbitals (dp-dp model) to the smallest possible two-orbital model comprising the eg states only (eg-eg model). We find that in all the considered models, the bare interactions are not very sensitive to the compression. However the partially screened interaction parameters show an almost linear increment as a function of compression, resulting from the substantial weakening of screening effects upon compression. This counterintuitive trend is explained from the specific characteristic changes of the basic electronic structure of this system. We further calculate the nearest neighbor inter-site d-d interaction terms which also show substantial enhancement due to compression. Our results for both the experimental and highly compressed structures reveal that the frequency dependence of the partially screened interactions can not be ignored in a realistic modeling of NiO. We also find that the computed interaction parameters for the antiferromagnetic NiO are almost identical to their paramagnetic counter parts.
We study the photoinduced breakdown of a two-orbital Mott insulator and resulting metallic state. Using time-dependent density matrix renormalization group, we scrutinize the real-time dynamics of the half-filled two-orbital Hubbard model interacting with a resonant radiation field pulse. The breakdown, caused by production of doublon-holon pairs, is enhanced by Hunds exchange, which dynamically activates large orbital fluctuations. The melting of the Mott insulator is accompanied by a high to low spin transition with a concomitant reduction of antiferromagnetic spin fluctuations. Most notably, the overall time response is driven by the photogeneration of excitons with orbital character that are stabilized by Hunds coupling. These unconventional Hund excitons correspond to bound spin-singlet orbital-triplet doublon-holon pairs. We study exciton properties such as bandwidth, binding potential, and size within a semiclassical approach. The photometallic state results from a coexistence of Hund excitons and doublon-holon plasma.