Do you want to publish a course? Click here

Entropy and electronic orders of the three-orbital Hubbard model with antiferromagnetic Hund coupling

90   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

An antiferromagnetic Hund coupling in multiorbital Hubbard systems induces orbital freezing and an associated superconducting instability, as well as unique composite orders in the case of an odd number of orbitals. While the rich phase diagram of the half-filled three-orbital model has recently been explored in detail, the properties of the doped system remain to be clarified. Here, we complement the previous studies by computing the entropy of the half-filled model, which exhibits an increase in the orbital-frozen region, and a suppression in the composite ordered phase. The doping dependent phase diagram shows that the composite ordered state can be stabilized in the doped Mott regime, if conventional electronic orders are suppressed by frustration. While antiferro orbital order dominates the filling range $2lesssim n le 3$, and ferro orbital order the strongly interacting region for $1lesssim n < 2$, we find superconductivity with a remarkably high $T_c$ around $n=1.5$ (quarter filling). Also in the doped system, there is a close connection between the orbital freezing crossover and superconductivity.



rate research

Read More

The Hund coupling in multiorbital Hubbard systems induces spin freezing and associated Hund metal behavior. Using dynamical mean field theory, we explore the effect of local moment formation, spin and charge excitations on the entropy and specific heat of the three-orbital model. In particular, we demonstrate a substantial enhancement of the entropy in the spin-frozen metal phase at low temperatures, and peaks in the specific heat associated with the activation of spin and charge fluctuations at high temperature. We also clarify how these temperature scales depend on the interaction parameters and filling.
We study the interplay between Mott physics, driven by Coulomb repulsion U, and Hund physics, driven by Hunds coupling J, for a minimal model for Hund metals, the orbital-symmetric three-band Hubbard-Hund model (3HHM) for a lattice filling of 1/3. Hund-correlated metals are characterized by spin-orbital separation (SOS), a Hunds-rule-induced two-stage Kondo-type screening process, in which spin screening occurs at much lower energy scales than orbital screening. By contrast, in Mott-correlated metals, lying close to the phase boundary of a metal-insulator transition, the SOS window becomes negligibly small and the Hubbard bands are well separated. Using dynamical mean-field theory and the numerical renormalization group as real-frequency impurity solver, we identify numerous fingerprints distinguishing Hundness from Mottness in the temperature dependence of various physical quantities. These include ARPES-type spectra, the local self-energy, static local orbital and spin susceptibilities, resistivity, thermopower, and lattice and impurity entropies. Our detailed description of the behavior of these quantities within the context of a simple model Hamiltonian will be helpful for distinguishing Hundness from Mottness in experimental and theoretical studies of real materials.
The ground-state phase diagrams of the three-orbital t2g Hubbard model are studied using a Hartree-Fock approximation. First, a complete set of multipolar order parameters for t2g models defined in terms of the effective total angular momentum jeff are theoretically derived. These order parameters can classify off-diagonal orders between jeff = 1/2 and jeff = 3/2 manifolds. Second, through extensive Hartree-Fock calculations, the ground-state phase diagrams in the space of (1) the onsite Coulomb repulsion U, (2) the spin-orbit coupling (SOC), and (3) the number of electrons are mapped out. A variety of nontrivial quantum phases with jeff-diagonal and jeff-off-diagonal multipole orders are found. Finally, future studies using more numerically expensive methods, such as dynamical mean-field theory are discussed.
122 - Y. F. Kung , C.-C. Chen , Yao Wang 2016
We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the ({pi},{pi}) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understanding of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.
We study ordered phases with broken translational symmetry in the half-filled three-orbital Hubbard model with antiferromagnetic Hund coupling by means of dynamical mean-field theory (DMFT) and continuous-time quantum Monte Carlo simulations. The stability regions of the antiferro-orbital (AFO), antiferro-magnetic (AFM), and charge density wave (CDW) states are determined by measuring the corresponding order parameters. We introduce two symmetrically distinct AFO order parameters and show that these are the primary order parameters in the phase diagram. The CDW and AFM states appear simultaneously with these two types of AFO orders in the weak and strong coupling region, respectively. The DMFT phase diagram is consistent with the results obtained by the Hartree approximation and strong-coupling perturbation theory. In the weak coupling regime, a nontrivial exponent $beta=3/2$ is found for the CDW order parameter, which is related to the coupling between the CDW and AFO orders in the Landau theory characteristic for the three-orbital model. We also demonstrate the existence of a metallic AFO state without any charge disproportions and magnetic orders, which appears only at finite temperatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا