Do you want to publish a course? Click here

Diffeomorphism groups of prime 3-manifolds

164   0   0.0 ( 0 )
 Added by Richard H. Bamler
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $X$ be a compact orientable non-Haken 3-manifold modeled on the Thurston geometry $text{Nil}$. We show that the diffeomorphism group $text{Diff}(X)$ deformation retracts to the isometry group $text{Isom}(X)$. Combining this with earlier work by many authors, this completes the determination the homotopy type of $text{Diff}(X)$ for any compact, orientable, prime 3-manifold $X$.



rate research

Read More

We complete the proof of the Generalized Smale Conjecture, apart from the case of $RP^3$, and give a new proof of Gabais theorem for hyperbolic 3-manifolds. We use an approach based on Ricci flow through singularities, which applies uniformly to spherical space forms other than $S^3$ and $RP^3$ and hyperbolic manifolds, to prove that the moduli space of metrics of constant sectional curvature is contractible. As a corollary, for such a 3-manifold $X$, the inclusion $text{Isom} (X,g)to text{Diff}(X)$ is a homotopy equivalence for any Riemannian metric $g$ of constant sectional curvature.
Let $C^{[M]}$ be a (local) Denjoy-Carleman class of Beurling or Roumieu type, where the weight sequence $M=(M_k)$ is log-convex and has moderate growth. We prove that the groups ${operatorname{Diff}}mathcal{B}^{[M]}(mathbb{R}^n)$, ${operatorname{Diff}}W^{[M],p}(mathbb{R}^n)$, ${operatorname{Diff}}{mathcal{S}}{}_{[L]}^{[M]}(mathbb{R}^n)$, and ${operatorname{Diff}}mathcal{D}^{[M]}(mathbb{R}^n)$ of $C^{[M]}$-diffeomorphisms on $mathbb{R}^n$ which differ from the identity by a mapping in $mathcal{B}^{[M]}$ (global Denjoy--Carleman), $W^{[M],p}$ (Sobolev-Denjoy-Carleman), ${mathcal{S}}{}_{[L]}^{[M]}$ (Gelfand--Shilov), or $mathcal{D}^{[M]}$ (Denjoy-Carleman with compact support) are $C^{[M]}$-regular Lie groups. As an application we use the $R$-transform to show that the Hunter-Saxton PDE on the real line is well-posed in any of the classes $W^{[M],1}$, ${mathcal{S}}{}_{[L]}^{[M]}$, and $mathcal{D}^{[M]}$. Here we find some surprising groups with continuous left translations and $C^{[M]}$ right translations (called half-Lie groups), which, however, also admit $R$-transforms.
We analyze subsets of Carnot groups that have intrinsic constant normal, as they appear in the blowup study of sets that have finite sub-Riemannian perimeter. The purpose of this paper is threefold. First, we prove some mild regularity and structural results in arbitrary Carnot groups. Namely, we show that for every constant-normal set in a Carnot group its sub-Riemannian-Lebesgue representative is regularly open, contractible, and its topological boundary coincides with the reduced boundary and with the measure-theoretic boundary. We infer these properties from a cone property. Such a cone will be a semisubgroup with nonempty interior that is canonically associated with the normal direction. We characterize the constant-normal sets exactly as those that are arbitrary unions of translations of such semisubgroups. Second, making use of such a characterization, we provide some pathological examples in the specific case of the free-Carnot group of step 3 and rank 2. Namely, we construct a constant normal set that, with respect to any Riemannian metric, is not of locally finite perimeter; we also construct an example with non-unique intrinsic blowup at some point, showing that it has different upper and lower sub-Riemannian density at the origin. Third, we show that in Carnot groups of step 4 or less, every constant-normal set is intrinsically rectifiable, in the sense of Franchi, Serapioni, and Serra Cassano.
298 - Nigel Hitchin 2015
By studying the Higgs bundle equations with the gauge group replaced by the group of symplectic diffeomorphisms of the 2-sphere we encounter the notion of a folded hyperkaehler 4-manifold and conjecture the existence of a family of such metrics parametrised by an infinite-dimensional analogue of Teichmueller space.
We show that the identity component of the group of diffeomorphisms of a closed oriented surface of positive genus admits many unbounded quasi-morphisms. As a corollary, we also deduce that this group is not uniformly perfect and its fragmentation norm is unbounded, answering a question of Burago--Ivanov--Polterovich. As a key tool we construct a hyperbolic graph on which these groups act, which is the analog of the curve graph for the mapping class group.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا