No Arabic abstract
This work proposes a tractable estimation of the maximum a posteriori (MAP) threshold of various families of sparse-graph code ensembles, by using an approximation for the extended belief propagation generalized extrinsic information transfer (EBP-GEXIT) function, first proposed by Measson et al. We consider the transmission over non-binary complex-input additive white Gaussian noise channel and extend the existing results to obtain an expression for the GEXIT function. We estimate the MAP threshold by applying the Maxwell construction to the obtained approximate EBP-GEXIT charts for various families of low-density parity-check (LDPC), generalized LDPC, doubly generalized LDPC, and serially concatenated turbo codes (SC-TC). When codewords of SC-TC are modulated using Gray mapping, we also explore where the spatially-coupled belief propagation (BP) threshold is located with respect to the previously computed MAP threshold. Numerical results indicate that the BP threshold of the spatially-coupled SC-TC does saturate to the MAP threshold obtained via EBP-GEXIT chart.
In this paper, we propose a novel low complexity scaling strategy of min-sum decoding algorithm for irregular LDPC codes. In the proposed method, we generalize our previously proposed simplified Variable Scaled Min-Sum (SVS-min-sum) by replacing the sub-optimal starting value and heuristic update for the scaling factor sequence by optimized values. Density evolution and Nelder-Mead optimization are used offline, prior to the decoding, to obtain the optimal starting point and per iteration updating step size for the scaling factor sequence of the proposed scaling strategy. The optimization of these parameters proves to be of noticeable positive impact on the decoding performance. We used different DVB-T2 LDPC codes in our simulation. Simulation results show the superior performance (in both WER and latency) of the proposed algorithm to other Min-Sum based algorithms. In addition to that, generalized SVS-min-sum algorithm has very close performance to LLR-SPA with much lower complexity.
In this paper, we perform a threshold analysis of braided convolutional codes (BCCs) on the additive white Gaussian noise (AWGN) channel. The decoding thresholds are estimated by Monte-Carlo density evolution (MC-DE) techniques and compared with approximate thresholds from an erasure channel prediction. The results show that, with spatial coupling, the predicted thresholds are very accurate and quickly approach capacity if the coupling memory is increased. For uncoupled ensembles with random puncturing, the prediction can be improved with help of the AWGN threshold of the unpunctured ensemble.
In this paper, we study systematic Luby Transform (SLT) codes over additive white Gaussian noise (AWGN) channel. We introduce the encoding scheme of SLT codes and give the bipartite graph for iterative belief propagation (BP) decoding algorithm. Similar to low-density parity-check codes, Gaussian approximation (GA) is applied to yield asymptotic performance of SLT codes. Recent work about SLT codes has been focused on providing better encoding and decoding algorithms and design of degree distributions. In our work, we propose a novel linear programming method to optimize the degree distribution. Simulation results show that the proposed distributions can provide better bit-error-ratio (BER) performance. Moreover, we analyze the lower bound of SLT codes and offer closed form expressions.
Braided convolutional codes (BCCs) are a class of spatially coupled turbo-like codes that can be described by a $(2,3)$-regular compact graph. In this paper, we introduce a family of $(d_v,d_c)$-regular GLDPC codes with convolutional code constraints (CC-GLDPC codes), which form an extension of classical BCCs to arbitrary regular graphs. In order to characterize the performance in the waterfall and error floor regions, we perform an analysis of the density evolution thresholds as well as the finite-length ensemble weight enumerators and minimum distances of the ensembles. In particular, we consider various ensembles of overall rate $R=1/3$ and $R=1/2$ and study the trade-off between variable node degree and strength of the component codes. We also compare the results to corresponding classical LDPC codes with equal degrees and rates. It is observed that for the considered LDPC codes with variable node degree $d_v>2$, we can find a CC-GLDPC code with smaller $d_v$ that offers similar or better performance in terms of BP and MAP thresholds at the expense of a negligible loss in the minimum distance.
This paper considers density evolution for lowdensity parity-check (LDPC) and multi-edge type low-density parity-check (MET-LDPC) codes over the binary input additive white Gaussian noise channel. We first analyze three singleparameter Gaussian approximations for density evolution and discuss their accuracy under several conditions, namely at low rates, with punctured and degree-one variable nodes. We observe that the assumption of symmetric Gaussian distribution for the density-evolution messages is not accurate in the early decoding iterations, particularly at low rates and with punctured variable nodes. Thus single-parameter Gaussian approximation methods produce very poor results in these cases. Based on these observations, we then introduce a new density evolution approximation algorithm for LDPC and MET-LDPC codes. Our method is a combination of full density evolution and a single-parameter Gaussian approximation, where we assume a symmetric Gaussian distribution only after density-evolution messages closely follow a symmetric Gaussian distribution. Our method significantly improves the accuracy of the code threshold estimation. Additionally, the proposed method significantly reduces the computational time of evaluating the code threshold compared to full density evolution thereby making it more suitable for code design.