No Arabic abstract
In this paper, we study systematic Luby Transform (SLT) codes over additive white Gaussian noise (AWGN) channel. We introduce the encoding scheme of SLT codes and give the bipartite graph for iterative belief propagation (BP) decoding algorithm. Similar to low-density parity-check codes, Gaussian approximation (GA) is applied to yield asymptotic performance of SLT codes. Recent work about SLT codes has been focused on providing better encoding and decoding algorithms and design of degree distributions. In our work, we propose a novel linear programming method to optimize the degree distribution. Simulation results show that the proposed distributions can provide better bit-error-ratio (BER) performance. Moreover, we analyze the lower bound of SLT codes and offer closed form expressions.
We propose a technique to design finite-length irregular low-density parity-check (LDPC) codes over the binary-input additive white Gaussian noise (AWGN) channel with good performance in both the waterfall and the error floor region. The design process starts from a protograph which embodies a desirable degree distribution. This protograph is then lifted cyclically to a certain block length of interest. The lift is designed carefully to satisfy a certain approximate cycle extrinsic message degree (ACE) spectrum. The target ACE spectrum is one with extremal properties, implying a good error floor performance for the designed code. The proposed construction results in quasi-cyclic codes which are attractive in practice due to simple encoder and decoder implementation. Simulation results are provided to demonstrate the effectiveness of the proposed construction in comparison with similar existing constructions.
In this paper, we perform a threshold analysis of braided convolutional codes (BCCs) on the additive white Gaussian noise (AWGN) channel. The decoding thresholds are estimated by Monte-Carlo density evolution (MC-DE) techniques and compared with approximate thresholds from an erasure channel prediction. The results show that, with spatial coupling, the predicted thresholds are very accurate and quickly approach capacity if the coupling memory is increased. For uncoupled ensembles with random puncturing, the prediction can be improved with help of the AWGN threshold of the unpunctured ensemble.
This work proposes a tractable estimation of the maximum a posteriori (MAP) threshold of various families of sparse-graph code ensembles, by using an approximation for the extended belief propagation generalized extrinsic information transfer (EBP-GEXIT) function, first proposed by Measson et al. We consider the transmission over non-binary complex-input additive white Gaussian noise channel and extend the existing results to obtain an expression for the GEXIT function. We estimate the MAP threshold by applying the Maxwell construction to the obtained approximate EBP-GEXIT charts for various families of low-density parity-check (LDPC), generalized LDPC, doubly generalized LDPC, and serially concatenated turbo codes (SC-TC). When codewords of SC-TC are modulated using Gray mapping, we also explore where the spatially-coupled belief propagation (BP) threshold is located with respect to the previously computed MAP threshold. Numerical results indicate that the BP threshold of the spatially-coupled SC-TC does saturate to the MAP threshold obtained via EBP-GEXIT chart.
The Gilbert-Elliot (GE) channel is a commonly-accepted model for packet erasures in networks. Streaming codes are a class of packet-level erasure codes designed to provide reliable communication over the GE channel. The design of a streaming code may be viewed as a two-step process. In the first, a more tractable, delay-constrained sliding window (DCSW) channel model is considered as a proxy to the GE channel. The streaming code is then designed to reliably recover from all erasures introduced by the DCSW channel model. Simulation is typically used to evaluate the performance of the streaming code over the original GE channel, as analytic performance evaluation is challenging. In the present paper, we take an important first step towards analytical performance evaluation. Recognizing that most, efficient constructions of a streaming code are based on the diagonal embedding or horizontal embedding of scalar block codes within a packet stream, this paper provides upper and lower bounds on the block-erasure probability of the underlying scalar block code when operated over the GE channel.
We study the performance of low-density parity-check (LDPC) codes over finite integer rings, over two channels that arise from the Lee metric. The first channel is a discrete memory-less channel (DMC) matched to the Lee metric. The second channel adds to each codeword an error vector of constant Lee weight, where the error vector is picked uniformly at random from the set of vectors of constant Lee weight. It is shown that the marginal conditional distribution of the two channels coincides, in the limit of large blocklengths. The performance of selected LDPC code ensembles is analyzed by means of density evolution and finite-length simulations, with belief propagation decoding and with a low-complexity symbol message passing algorithm.