A weighted simplicial complex is a simplicial complex with values (called weights) on the vertices. In this paper, we consider weighted simplicial complexes with $mathbb{R}^2$-valued weights. We study the weighted homology and the weighted analytic torsion for such weighted simplicial complexes.
We provide a random simplicial complex by applying standard constructions to a Poisson point process in Euclidean space. It is gigantic in the sense that - up to homotopy equivalence - it almost surely contains infinitely many copies of every compact topological manifold, both in isolation and in percolation.
Let $X$ be a simplicial complex on vertex set $V$. We say that $X$ is $d$-representable if it is isomorphic to the nerve of a family of convex sets in $mathbb{R}^d$. We define the $d$-boxicity of $X$ as the minimal $k$ such that $X$ can be written as the intersection of $k$ $d$-representable simplicial complexes. This generalizes the notion of boxicity of a graph, defined by Roberts. A missing face of $X$ is a set $tausubset V$ such that $tau otin X$ but $sigmain X$ for any $sigmasubsetneq tau$. We prove that the $d$-boxicity of a simplicial complex on $n$ vertices without missing faces of dimension larger than $d$ is at most $leftlfloorfrac{1}{d+1}binom{n}{d}rightrfloor$. The bound is sharp: the $d$-boxicity of a simplicial complex whose set of missing faces form a Steiner $(d,d+1,n)$-system is exactly $frac{1}{d+1}binom{n}{d}$.
We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these combinatorial Hopf algebras give rise to symmetric functions that encode information about colorings of simplicial complexes and their $f$-vectors. We also use characters to give a generalization of Stanleys $(-1)$-color theorem. A $q$-analog version of this family of characters is also studied.
Let $mathcal{H}$ be a hypergraph of rank $r$. We show that the simplicial complex whose simplices are the hypergraphs $mathcal{F}subsetmathcal{H}$ with covering number at most $p$ is $left(binom{r+p}{r}-1right)$-collapsible, and the simplicial complex whose simplices are the pairwise intersecting hypergraphs $mathcal{F}subsetmathcal{H}$ is $frac{1}{2}binom{2r}{r}$-collapsible.