Do you want to publish a course? Click here

Combinatorial Hopf Algebras of Simplicial Complexes

209   0   0.0 ( 0 )
 Added by John Machacek
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these combinatorial Hopf algebras give rise to symmetric functions that encode information about colorings of simplicial complexes and their $f$-vectors. We also use characters to give a generalization of Stanleys $(-1)$-color theorem. A $q$-analog version of this family of characters is also studied.



rate research

Read More

We provide a random simplicial complex by applying standard constructions to a Poisson point process in Euclidean space. It is gigantic in the sense that - up to homotopy equivalence - it almost surely contains infinitely many copies of every compact topological manifold, both in isolation and in percolation.
195 - Alan Lew 2018
Let $mathcal{H}$ be a hypergraph of rank $r$. We show that the simplicial complex whose simplices are the hypergraphs $mathcal{F}subsetmathcal{H}$ with covering number at most $p$ is $left(binom{r+p}{r}-1right)$-collapsible, and the simplicial complex whose simplices are the pairwise intersecting hypergraphs $mathcal{F}subsetmathcal{H}$ is $frac{1}{2}binom{2r}{r}$-collapsible.
263 - Alan Lew 2020
Let $X$ be a simplicial complex on vertex set $V$. We say that $X$ is $d$-representable if it is isomorphic to the nerve of a family of convex sets in $mathbb{R}^d$. We define the $d$-boxicity of $X$ as the minimal $k$ such that $X$ can be written as the intersection of $k$ $d$-representable simplicial complexes. This generalizes the notion of boxicity of a graph, defined by Roberts. A missing face of $X$ is a set $tausubset V$ such that $tau otin X$ but $sigmain X$ for any $sigmasubsetneq tau$. We prove that the $d$-boxicity of a simplicial complex on $n$ vertices without missing faces of dimension larger than $d$ is at most $leftlfloorfrac{1}{d+1}binom{n}{d}rightrfloor$. The bound is sharp: the $d$-boxicity of a simplicial complex whose set of missing faces form a Steiner $(d,d+1,n)$-system is exactly $frac{1}{d+1}binom{n}{d}$.
We introduce a Hopf algebra structure of subword complexes, including both finite and infinite types. We present an explicit cancellation free formula for the antipode using acyclic orientations of certain graphs, and show that this Hopf algebra induces a natural non-trivial sub-Hopf algebra on $c$-clusters in the theory of cluster algebras.
We provide a simple characterization of simplicial complexes on few vertices that embed into the $d$-sphere. Namely, a simplicial complex on $d+3$ vertices embeds into the $d$-sphere if and only if its non-faces do not form an intersecting family. As immediate consequences, we recover the classical van Kampen--Flores theorem and provide a topological extension of the ErdH os--Ko--Rado theorem. By analogy with Farys theorem for planar graphs, we show in addition that such complexes satisfy the rigidity property that continuous and linear embeddability are equivalent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا