Do you want to publish a course? Click here

Kori: Interactive Synthesis of Text and Charts in Data Documents

116   0   0.0 ( 0 )
 Added by Nam Wook Kim
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Charts go hand in hand with text to communicate complex data and are widely adopted in news articles, online blogs, and academic papers. They provide graphical summaries of the data, while text explains the message and context. However, synthesizing information across text and charts is difficult; it requires readers to frequently shift their attention. We investigated ways to support the tight coupling of text and charts in data documents. To understand their interplay, we analyzed the design space of chart-text references through news articles and scientific papers. Informed by the analysis, we developed a mixed-initiative interface enabling users to construct interactive references between text and charts. It leverages natural language processing to automatically suggest references as well as allows users to manually construct other references effortlessly. A user study complemented with algorithmic evaluation of the system suggests that the interface provides an effective way to compose interactive data documents.



rate research

Read More

Charts often contain visually prominent features that draw attention to aspects of the data and include text captions that emphasize aspects of the data. Through a crowdsourced study, we explore how readers gather takeaways when considering charts and captions together. We first ask participants to mark visually prominent regions in a set of line charts. We then generate text captions based on the prominent features and ask participants to report their takeaways after observing chart-caption pairs. We find that when both the chart and caption describe a high-prominence feature, readers treat the doubly emphasized high-prominence feature as the takeaway; when the caption describes a low-prominence chart feature, readers rely on the chart and report a higher-prominence feature as the takeaway. We also find that external information that provides context, helps further convey the captions message to the reader. We use these findings to provide guidelines for authoring effective chart-caption pairs.
Sketching and natural languages are effective communication media for interactive applications. We introduce Sketchforme, the first neural-network-based system that can generate sketches based on text descriptions specified by users. Sketchforme is capable of gaining high-level and low-level understanding of multi-object sketched scenes without being trained on sketched scene datasets annotated with text descriptions. The sketches composed by Sketchforme are expressive and realistic: we show in our user study that these sketches convey descriptions better than human-generated sketches in multiple cases, and 36.5% of those sketches are considered to be human-generated. We develop multiple interactive applications using these generated sketches, and show that Sketchforme can significantly improve language learning applications and support intelligent language-based sketching assistants.
This paper presents a novel approach, called AirScript, for creating, recognizing and visualizing documents in air. We present a novel algorithm, called 2-DifViz, that converts the hand movements in air (captured by a Myo-armband worn by a user) into a sequence of x, y coordinates on a 2D Cartesian plane, and visualizes them on a canvas. Existing sensor-based approaches either do not provide visual feedback or represent the recognized characters using prefixed templates. In contrast, AirScript stands out by giving freedom of movement to the user, as well as by providing a real-time visual feedback of the written characters, making the interaction natural. AirScript provides a recognition module to predict the content of the document created in air. To do so, we present a novel approach based on deep learning, which uses the sensor data and the visualizations created by 2-DifViz. The recognition module consists of a Convolutional Neural Network (CNN) and two Gated Recurrent Unit (GRU) Networks. The output from these three networks is fused to get the final prediction about the characters written in air. AirScript can be used in highly sophisticated environments like a smart classroom, a smart factory or a smart laboratory, where it would enable people to annotate pieces of texts wherever they want without any reference surface. We have evaluated AirScript against various well-known learning models (HMM, KNN, SVM, etc.) on the data of 12 participants. Evaluation results show that the recognition module of AirScript largely outperforms all of these models by achieving an accuracy of 91.7% in a person independent evaluation and a 96.7% accuracy in a person dependent evaluation.
Well-designed data visualizations can lead to more powerful and intuitive processing by a viewer. To help a viewer intuitively compare values to quickly generate key takeaways, visualization designers can manipulate how data values are arranged in a chart to afford particular comparisons. Using simple bar charts as a case study, we empirically tested the comparison affordances of four common arrangements: vertically juxtaposed, horizontally juxtaposed, overlaid, and stacked. We asked participants to type out what patterns they perceived in a chart, and coded their takeaways into types of comparisons. In a second study, we asked data visualization design experts to predict which arrangement they would use to afford each type of comparison and found both alignments and mismatches with our findings. These results provide concrete guidelines for how both human designers and automatic chart recommendation systems can make visualizations that help viewers extract the right takeaway.
Media is evolving from traditional linear narratives to personalised experiences, where control over information (or how it is presented) is given to individual audience members. Measuring and understanding audience engagement with this media is important in at least two ways: (1) a post-hoc understanding of how engaged audiences are with the content will help production teams learn from experience and improve future productions; (2), this type of media has potential for real-time measures of engagement to be used to enhance the user experience by adapting content on-the-fly. Engagement is typically measured by asking samples of users to self-report, which is time consuming and expensive. In some domains, however, interaction data have been used to infer engagement. Fortuitously, the nature of interactive media facilitates a much richer set of interaction data than traditional media; our research aims to understand if these data can be used to infer audience engagement. In this paper, we report a study using data captured from audience interactions with an interactive TV show to model and predict engagement. We find that temporal metrics, including overall time spent on the experience and the interval between events, are predictive of engagement. The results demonstrate that interaction data can be used to infer users engagement during and after an experience, and the proposed techniques are relevant to better understand audience preference and responses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا