No Arabic abstract
As machine learning and data science applications grow ever more prevalent, there is an increased focus on data sharing and open data initiatives, particularly in the context of the African continent. Many argue that data sharing can support research and policy design to alleviate poverty, inequality, and derivative effects in Africa. Despite the fact that the datasets in question are often extracted from African communities, conversations around the challenges of accessing and sharing African data are too often driven by nonAfrican stakeholders. These perspectives frequently employ a deficit narratives, often focusing on lack of education, training, and technological resources in the continent as the leading causes of friction in the data ecosystem. We argue that these narratives obfuscate and distort the full complexity of the African data sharing landscape. In particular, we use storytelling via fictional personas built from a series of interviews with African data experts to complicate dominant narratives and to provide counternarratives. Coupling these personas with research on data practices within the continent, we identify recurring barriers to data sharing as well as inequities in the distribution of data sharing benefits. In particular, we discuss issues arising from power imbalances resulting from the legacies of colonialism, ethno-centrism, and slavery, disinvestment in building trust, lack of acknowledgement of historical and present-day extractive practices, and Western-centric policies that are ill-suited to the African context. After outlining these problems, we discuss avenues for addressing them when sharing data generated in the continent.
Developing nations are particularly susceptible to the adverse effects of global warming. By 2040, 14 percent of global emissions will come from data centers. This paper presents early findings in the use AI and digital twins to model and optimize data center operations.
As more and more data is collected for various reasons, the sharing of such data becomes paramount to increasing its value. Many applications ranging from smart cities to personalized health care require individuals and organizations to share data at an unprecedented scale. Data sharing is crucial in todays world, but due to privacy reasons, security concerns and regulation issues, the conditions under which the sharing occurs needs to be carefully specified. Currently, this process is done by lawyers and requires the costly signing of legal agreements. In many cases, these data sharing agreements are hard to track, manage or enforce. In this work, we propose a novel alternative for tracking, managing and especially enforcing such data sharing agreements using smart contracts and blockchain technology. We design a framework that generates smart contracts from parameters based on legal data sharing agreements. The terms in these agreements are automatically enforced by the system. Monetary punishment can be employed using secure voting by external auditors to hold the violators accountable. Our experimental evaluation shows that our proposed framework is efficient and low-cost.
Short-form digital storytelling has become a popular medium for millions of people to express themselves. Traditionally, this medium uses primarily 2D media such as text (e.g., memes), images (e.g., Instagram), gifs (e.g., Giphy), and videos (e.g., TikTok, Snapchat). To expand the modalities from 2D to 3D media, we present SceneAR, a smartphone application for creating sequential scene-based micro narratives in augmented reality (AR). What sets SceneAR apart from prior work is the ability to share the scene-based stories as AR content -- no longer limited to sharing images or videos, these narratives can now be experienced in peoples own physical environments. Additionally, SceneAR affords users the ability to remix AR, empowering them to build-upon others creations collectively. We asked 18 people to use SceneAR in a 3-day study. Based on user interviews, analysis of screen recordings, and the stories they created, we extracted three themes. From those themes and the study overall, we derived six strategies for designers interested in supporting short-form AR narratives.
This study delves into the research question: how does gender influence smartphone ownership and autonomy in using the internet among the youth in rural India? This paper explores the influence of local culture on smartphone ownership and autonomy through an ethnographic study among rural Indian youth by analysing the intersection of gender with other identity axes. The findings show that young peoples smartphone ownership and autonomy is shaped by their social and cultural setting, and could lead to various inequalities in their internet usage. This study shows that gender paves way for various disparities with regard to smartphone ownership and internet usage. Decolonisation of the understanding of smartphone ownership and internet usage patterns of the youth in the Global South suggests a reconsideration of the user experience designs and platform policies.
The onset of the Coronavirus disease 2019 (COVID-19) pandemic instigated a global infodemic that has brought unprecedented challenges for society as a whole. During this time, a number of manual fact-checking initiatives have emerged to alleviate the spread of dis/mis-information. This study is about COVID-19 debunks published in multiple languages by different fact-checking organisations, sometimes as far as several months apart, despite the fact that the claim has already been fact-checked before. The spatiotemporal analysis reveals that similar or nearly duplicate false COVID-19 narratives have been spreading in multifarious modalities on various social media platforms in different countries. We also find that misinformation involving general medical advice has spread across multiple countries and hence has the highest proportion of false COVID-19 narratives that keep being debunked. Furthermore, as manual fact-checking is an onerous task in itself, therefore debunking similar claims recurrently is leading to a waste of resources. To this end, we propound the idea of the inclusion of multilingual debunk search in the fact-checking pipeline.