No Arabic abstract
An increasing amount of location-based service (LBS) data is being accumulated and helps to study urban dynamics and human mobility. GPS coordinates and other location indicators are normally low dimensional and only representing spatial proximity, thus difficult to be effectively utilized by machine learning models in Geo-aware applications. Existing location embedding methods are mostly tailored for specific problems that are taken place within areas of interest. When it comes to the scale of a city or even a country, existing approaches always suffer from extensive computational cost and significant data sparsity. Different from existing studies, we propose to learn representations through a GCN-aided skip-gram model named GCN-L2V by considering both spatial connection and human mobility. With a flow graph and a spatial graph, it embeds context information into vector representations. GCN-L2V is able to capture relationships among locations and provide a better notion of similarity in a spatial environment. Across quantitative experiments and case studies, we empirically demonstrate that representations learned by GCN-L2V are effective. As far as we know, this is the first study that provides a fine-grained location embedding at the city level using only LBS records. GCN-L2V is a general-purpose embedding model with high flexibility and can be applied in down-streaming Geo-aware applications.
Place embeddings generated from human mobility trajectories have become a popular method to understand the functionality of places. Place embeddings with high spatial resolution are desirable for many applications, however, downscaling the spatial resolution deteriorates the quality of embeddings due to data sparsity, especially in less populated areas. We address this issue by proposing a method that generates fine grained place embeddings, which leverages spatial hierarchical information according to the local density of observed data points. The effectiveness of our fine grained place embeddings are compared to baseline methods via next place prediction tasks using real world trajectory data from 3 cities in Japan. In addition, we demonstrate the value of our fine grained place embeddings for land use classification applications. We believe that our technique of incorporating spatial hierarchical information can complement and reinforce various place embedding generating methods.
Communication devices (mobile networks, social media platforms) are produced digital traces for their users either voluntarily or not. This type of collective data can give powerful indications on their effect on urban systems design and development. For understanding the collective human behavior of urban city, the modeling techniques could be used. In this study the most important feature of human mobility is considered, which is the radius of gyration . This parameter is used to measure how (far /frequent) the individuals are shift inside specific observed region.
There is recently a surge in approaches that learn low-dimensional embeddings of nodes in networks. As there are many large-scale real-world networks, its inefficient for existing approaches to store amounts of parameters in memory and update them edge after edge. With the knowledge that nodes having similar neighborhood will be close to each other in embedding space, we propose COSINE (COmpresSIve NE) algorithm which reduces the memory footprint and accelerates the training process by parameters sharing among similar nodes. COSINE applies graph partitioning algorithms to networks and builds parameter sharing dependency of nodes based on the result of partitioning. With parameters sharing among similar nodes, COSINE injects prior knowledge about higher structural information into training process which makes network embedding more efficient and effective. COSINE can be applied to any embedding lookup method and learn high-quality embeddings with limited memory and shorter training time. We conduct experiments of multi-label classification and link prediction, where baselines and our model have the same memory usage. Experimental results show that COSINE gives baselines up to 23% increase on classification and up to 25% increase on link prediction. Moreover, time of all representation learning methods using COSINE decreases from 30% to 70%.
The research objectives are exploring characteristics of human mobility patterns, subsequently modelling them mathematically depending on inter-event time and traveled distances parameters using CDRs (Call Detailed Records). The observations are obtained from Armada festival in France. Understanding, modelling and simulating human mobility among urban regions is excitement approach, due to itsimportance in rescue situations for various events either indoor events like evacuation of buildings or outdoor ones like public assemblies,community evacuation in casesemerged during emergency situations, moreover serves urban planning and smart cities.
The outbreak of COVID-19 highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has been proved to be associated with the viral transmission. In this study, we analyzed 587 million tweets worldwide to see how global collaborative efforts in reducing human mobility are reflected from the user-generated information at the global, country, and the U.S. state scale. Considering the multifaceted nature of mobility, we propose two types of distance: the single-day distance and the cross-day distance. To quantify the responsiveness in certain geographical regions, we further propose a mobility-based responsive index (MRI) that captures the overall degree of mobility changes within a time window. The results suggest that mobility patterns obtained from Twitter data are amendable to quantitatively reflect the mobility dynamics. Globally, the proposed two distances had greatly deviated from their baselines after March 11, 2020, when WHO declared COVID-19 as a pandemic. The considerably less periodicity after the declaration suggests that the protection measures have obviously affected peoples travel routines. The country scale comparisons reveal the discrepancies in responsiveness, evidenced by the contrasting mobility patterns in different epidemic phases. We find that the triggers of mobility changes correspond well with the national announcements of mitigation measures. In the U.S., the influence of the COVID-19 pandemic on mobility is distinct. However, the impacts varied substantially among states. The strong mobility recovering momentum is further fueled by the Black Lives Matter protests, potentially fostering the second wave of infections in the U.S.