No Arabic abstract
Place embeddings generated from human mobility trajectories have become a popular method to understand the functionality of places. Place embeddings with high spatial resolution are desirable for many applications, however, downscaling the spatial resolution deteriorates the quality of embeddings due to data sparsity, especially in less populated areas. We address this issue by proposing a method that generates fine grained place embeddings, which leverages spatial hierarchical information according to the local density of observed data points. The effectiveness of our fine grained place embeddings are compared to baseline methods via next place prediction tasks using real world trajectory data from 3 cities in Japan. In addition, we demonstrate the value of our fine grained place embeddings for land use classification applications. We believe that our technique of incorporating spatial hierarchical information can complement and reinforce various place embedding generating methods.
An increasing amount of location-based service (LBS) data is being accumulated and helps to study urban dynamics and human mobility. GPS coordinates and other location indicators are normally low dimensional and only representing spatial proximity, thus difficult to be effectively utilized by machine learning models in Geo-aware applications. Existing location embedding methods are mostly tailored for specific problems that are taken place within areas of interest. When it comes to the scale of a city or even a country, existing approaches always suffer from extensive computational cost and significant data sparsity. Different from existing studies, we propose to learn representations through a GCN-aided skip-gram model named GCN-L2V by considering both spatial connection and human mobility. With a flow graph and a spatial graph, it embeds context information into vector representations. GCN-L2V is able to capture relationships among locations and provide a better notion of similarity in a spatial environment. Across quantitative experiments and case studies, we empirically demonstrate that representations learned by GCN-L2V are effective. As far as we know, this is the first study that provides a fine-grained location embedding at the city level using only LBS records. GCN-L2V is a general-purpose embedding model with high flexibility and can be applied in down-streaming Geo-aware applications.
Neural entity typing models typically represent fine-grained entity types as vectors in a high-dimensional space, but such spaces are not well-suited to modeling these types complex interdependencies. We study the ability of box embeddings, which embed concepts as d-dimensional hyperrectangles, to capture hierarchies of types even when these relationships are not defined explicitly in the ontology. Our model represents both types and entity mentions as boxes. Each mention and its context are fed into a BERT-based model to embed that mention in our box space; essentially, this model leverages typological clues present in the surface text to hypothesize a type representation for the mention. Box containment can then be used to derive both the posterior probability of a mention exhibiting a given type and the conditional probability relations between types themselves. We compare our approach with a vector-based typing model and observe state-of-the-art performance on several entity typing benchmarks. In addition to competitive typing performance, our box-based model shows better performance in prediction consistency (predicting a supertype and a subtype together) and confidence (i.e., calibration), demonstrating that the box-based model captures the latent type hierarchies better than the vector-based model does.
Many fundamental machine learning tasks can be formulated as a problem of learning with vector-valued functions, where we learn multiple scalar-valued functions together. Although there is some generalization analysis on different specific algorithms under the empirical risk minimization principle, a unifying analysis of vector-valued learning under a regularization framework is still lacking. In this paper, we initiate the generalization analysis of regularized vector-valued learning algorithms by presenting bounds with a mild dependency on the output dimension and a fast rate on the sample size. Our discussions relax the existing assumptions on the restrictive constraint of hypothesis spaces, smoothness of loss functions and low-noise condition. To understand the interaction between optimization and learning, we further use our results to derive the first generalization bounds for stochastic gradient descent with vector-valued functions. We apply our general results to multi-class classification and multi-label classification, which yield the first bounds with a logarithmic dependency on the output dimension for extreme multi-label classification with the Frobenius regularization. As a byproduct, we derive a Rademacher complexity bound for loss function classes defined in terms of a general strongly convex function.
The study of human mobility is crucial due to its impact on several aspects of our society, such as disease spreading, urban planning, well-being, pollution, and more. The proliferation of digital mobility data, such as phone records, GPS traces, and social media posts, combined with the predictive power of artificial intelligence, triggered the application of deep learning to human mobility. Existing surveys focus on single tasks, data sources, mechanistic or traditional machine learning approaches, while a comprehensive description of deep learning solutions is missing. This survey provides a taxonomy of mobility tasks, a discussion on the challenges related to each task and how deep learning may overcome the limitations of traditional models, a description of the most relevant solutions to the mobility tasks described above and the relevant challenges for the future. Our survey is a guide to the leading deep learning solutions to next-location prediction, crowd flow prediction, trajectory generation, and flow generation. At the same time, it helps deep learning scientists and practitioners understand the fundamental concepts and the open challenges of the study of human mobility.
In this paper, we investigate the suitability of state-of-the-art representation learning methods to the analysis of behavioral similarity of moving individuals, based on CDR trajectories. The core of the contribution is a novel methodological framework, mob2vec, centered on the combined use of a recent symbolic trajectory segmentation method for the removal of noise, a novel trajectory generalization method incorporating behavioral information, and an unsupervised technique for the learning of vector representations from sequential data. Mob2vec is the result of an empirical study conducted on real CDR data through an extensive experimentation. As a result, it is shown that mob2vec generates vector representations of CDR trajectories in low dimensional spaces which preserve the similarity of the mobility behavior of individuals.