Do you want to publish a course? Click here

Human Trajectories Characteristics

61   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Communication devices (mobile networks, social media platforms) are produced digital traces for their users either voluntarily or not. This type of collective data can give powerful indications on their effect on urban systems design and development. For understanding the collective human behavior of urban city, the modeling techniques could be used. In this study the most important feature of human mobility is considered, which is the radius of gyration . This parameter is used to measure how (far /frequent) the individuals are shift inside specific observed region.



rate research

Read More

An increasing amount of location-based service (LBS) data is being accumulated and helps to study urban dynamics and human mobility. GPS coordinates and other location indicators are normally low dimensional and only representing spatial proximity, thus difficult to be effectively utilized by machine learning models in Geo-aware applications. Existing location embedding methods are mostly tailored for specific problems that are taken place within areas of interest. When it comes to the scale of a city or even a country, existing approaches always suffer from extensive computational cost and significant data sparsity. Different from existing studies, we propose to learn representations through a GCN-aided skip-gram model named GCN-L2V by considering both spatial connection and human mobility. With a flow graph and a spatial graph, it embeds context information into vector representations. GCN-L2V is able to capture relationships among locations and provide a better notion of similarity in a spatial environment. Across quantitative experiments and case studies, we empirically demonstrate that representations learned by GCN-L2V are effective. As far as we know, this is the first study that provides a fine-grained location embedding at the city level using only LBS records. GCN-L2V is a general-purpose embedding model with high flexibility and can be applied in down-streaming Geo-aware applications.
Academic fields exhibit substantial levels of gender segregation. To date, most attempts to explain this persistent global phenomenon have relied on limited cross-sections of data from specific countries, fields, or career stages. Here we used a global longitudinal dataset assembled from profiles on ORCID.org to investigate which characteristics of a field predict gender differences among the academics who leave and join that field. Only two field characteristics consistently predicted such differences: (1) the extent to which a field values raw intellectual talent (brilliance) and (2) whether a field is in Science, Technology, Engineering, and Mathematics (STEM). Women more than men moved away from brilliance-oriented and STEM fields, and men more than women moved toward these fields. Our findings suggest that stereotypes associating brilliance and other STEM-relevant traits with men more than women play a key role in maintaining gender segregation across academia.
86 - Dapeng Zhao 2021
As more and more robots are envisioned to cooperate with humans sharing the same space, it is desired for robots to be able to predict others trajectories to navigate in a safe and self-explanatory way. We propose a Convolutional Neural Network-based approach to learn, detect, and extract patterns in sequential trajectory data, known here as Social Pattern Extraction Convolution (Social-PEC). A set of experiments carried out on the human trajectory prediction problem shows that our model performs comparably to the state of the art and outperforms in some cases. More importantly, the proposed approach unveils the obscurity in the previous use of a pooling layer, presenting a way to intuitively explain the decision-making process.
Human Trajectory Prediction (HTP) has gained much momentum in the last years and many solutions have been proposed to solve it. Proper benchmarking being a key issue for comparing methods, this paper addresses the question of evaluating how complex is a given dataset with respect to the prediction problem. For assessing a dataset complexity, we define a series of indicators around three concepts: Trajectory predictability; Trajectory regularity; Context complexity. We compare the most common datasets used in HTP in the light of these indicators and discuss what this may imply on benchmarking of HTP algorithms. Our source code is released on Github.
The research objectives are exploring characteristics of human mobility patterns, subsequently modelling them mathematically depending on inter-event time and traveled distances parameters using CDRs (Call Detailed Records). The observations are obtained from Armada festival in France. Understanding, modelling and simulating human mobility among urban regions is excitement approach, due to itsimportance in rescue situations for various events either indoor events like evacuation of buildings or outdoor ones like public assemblies,community evacuation in casesemerged during emergency situations, moreover serves urban planning and smart cities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا