No Arabic abstract
Face aging is the task aiming to translate the faces in input images to designated ages. To simplify the problem, previous methods have limited themselves only able to produce discrete age groups, each of which consists of ten years. Consequently, the exact ages of the translated results are unknown and it is unable to obtain the faces of different ages within groups. To this end, we propose the continuous face aging generative adversarial networks (CFA-GAN). Specifically, to make the continuous aging feasible, we propose to decompose image features into two orthogonal features: the identity and the age basis features. Moreover, we introduce the novel loss function for identity preservation which maximizes the cosine similarity between the original and the generated identity basis features. With the qualitative and quantitative evaluations on MORPH, we demonstrate the realistic and continuous aging ability of our model, validating its superiority against existing models. To the best of our knowledge, this work is the first attempt to handle continuous target ages.
Face aging is to render a given face to predict its future appearance, which plays an important role in the information forensics and security field as the appearance of the face typically varies with age. Although impressive results have been achieved with conditional generative adversarial networks (cGANs), the existing cGANs-based methods typically use a single network to learn various aging effects between any two different age groups. However, they cannot simultaneously meet three essential requirements of face aging -- including image quality, aging accuracy, and identity preservation -- and usually generate aged faces with strong ghost artifacts when the age gap becomes large. Inspired by the fact that faces gradually age over time, this paper proposes a novel progressive face aging framework based on generative adversarial network (PFA-GAN) to mitigate these issues. Unlike the existing cGANs-based methods, the proposed framework contains several sub-networks to mimic the face aging process from young to old, each of which only learns some specific aging effects between two adjacent age groups. The proposed framework can be trained in an end-to-end manner to eliminate accumulative artifacts and blurriness. Moreover, this paper introduces an age estimation loss to take into account the age distribution for an improved aging accuracy, and proposes to use the Pearson correlation coefficient as an evaluation metric measuring the aging smoothness for face aging methods. Extensively experimental results demonstrate superior performance over existing (c)GANs-based methods, including the state-of-the-art one, on two benchmarked datasets. The source code is available at~url{https://github.com/Hzzone/PFA-GAN}.
Recent studies have shown remarkable success in face image generations. However, most of the existing methods only generate face images from random noise, and cannot generate face images according to the specific attributes. In this paper, we focus on the problem of face synthesis from attributes, which aims at generating faces with specific characteristics corresponding to the given attributes. To this end, we propose a novel attributes aware face image generator method with generative adversarial networks called AFGAN. Specifically, we firstly propose a two-path embedding layer and self-attention mechanism to convert binary attribute vector to rich attribute features. Then three stacked generators generate $64 times 64$, $128 times 128$ and $256 times 256$ resolution face images respectively by taking the attribute features as input. In addition, an image-attribute matching loss is proposed to enhance the correlation between the generated images and input attributes. Extensive experiments on CelebA demonstrate the superiority of our AFGAN in terms of both qualitative and quantitative evaluations.
Generating realistic 3D faces is of high importance for computer graphics and computer vision applications. Generally, research on 3D face generation revolves around linear statistical models of the facial surface. Nevertheless, these models cannot represent faithfully either the facial texture or the normals of the face, which are very crucial for photo-realistic face synthesis. Recently, it was demonstrated that Generative Adversarial Networks (GANs) can be used for generating high-quality textures of faces. Nevertheless, the generation process either omits the geometry and normals, or independent processes are used to produce 3D shape information. In this paper, we present the first methodology that generates high-quality texture, shape, and normals jointly, which can be used for photo-realistic synthesis. To do so, we propose a novel GAN that can generate data from different modalities while exploiting their correlations. Furthermore, we demonstrate how we can condition the generation on the expression and create faces with various facial expressions. The qualitative results shown in this paper are compressed due to size limitations, full-resolution results and the accompanying video can be found in the supplementary documents. The code and models are available at the project page: https://github.com/barisgecer/TBGAN.
In this paper, we propose a novel framework to translate a portrait photo-face into an anime appearance. Our aim is to synthesize anime-faces which are style-consistent with a given reference anime-face. However, unlike typical translation tasks, such anime-face translation is challenging due to complex variations of appearances among anime-faces. Existing methods often fail to transfer the styles of reference anime-faces, or introduce noticeable artifacts/distortions in the local shapes of their generated faces. We propose AniGAN, a novel GAN-based translator that synthesizes high-quality anime-faces. Specifically, a new generator architecture is proposed to simultaneously transfer color/texture styles and transform local facial shapes into anime-like counterparts based on the style of a reference anime-face, while preserving the global structure of the source photo-face. We propose a double-branch discriminator to learn both domain-specific distributions and domain-shared distributions, helping generate visually pleasing anime-faces and effectively mitigate artifacts. Extensive experiments on selfie2anime and a new face2anime dataset qualitatively and quantitatively demonstrate the superiority of our method over state-of-the-art methods. The new dataset is available at https://github.com/bing-li-ai/AniGAN .
As a sub-domain of text-to-image synthesis, text-to-face generation has huge potentials in public safety domain. With lack of dataset, there are almost no related research focusing on text-to-face synthesis. In this paper, we propose a fully-trained Generative Adversarial Network (FTGAN) that trains the text encoder and image decoder at the same time for fine-grained text-to-face generation. With a novel fully-trained generative network, FTGAN can synthesize higher-quality images and urge the outputs of the FTGAN are more relevant to the input sentences. In addition, we build a dataset called SCU-Text2face for text-to-face synthesis. Through extensive experiments, the FTGAN shows its superiority in boosting both generated images quality and similarity to the input descriptions. The proposed FTGAN outperforms the previous state of the art, boosting the best reported Inception Score to 4.63 on the CUB dataset. On SCU-text2face, the face images generated by our proposed FTGAN just based on the input descriptions is of average 59% similarity to the ground-truth, which set a baseline for text-to-face synthesis.