No Arabic abstract
Face aging is to render a given face to predict its future appearance, which plays an important role in the information forensics and security field as the appearance of the face typically varies with age. Although impressive results have been achieved with conditional generative adversarial networks (cGANs), the existing cGANs-based methods typically use a single network to learn various aging effects between any two different age groups. However, they cannot simultaneously meet three essential requirements of face aging -- including image quality, aging accuracy, and identity preservation -- and usually generate aged faces with strong ghost artifacts when the age gap becomes large. Inspired by the fact that faces gradually age over time, this paper proposes a novel progressive face aging framework based on generative adversarial network (PFA-GAN) to mitigate these issues. Unlike the existing cGANs-based methods, the proposed framework contains several sub-networks to mimic the face aging process from young to old, each of which only learns some specific aging effects between two adjacent age groups. The proposed framework can be trained in an end-to-end manner to eliminate accumulative artifacts and blurriness. Moreover, this paper introduces an age estimation loss to take into account the age distribution for an improved aging accuracy, and proposes to use the Pearson correlation coefficient as an evaluation metric measuring the aging smoothness for face aging methods. Extensively experimental results demonstrate superior performance over existing (c)GANs-based methods, including the state-of-the-art one, on two benchmarked datasets. The source code is available at~url{https://github.com/Hzzone/PFA-GAN}.
Face aging is the task aiming to translate the faces in input images to designated ages. To simplify the problem, previous methods have limited themselves only able to produce discrete age groups, each of which consists of ten years. Consequently, the exact ages of the translated results are unknown and it is unable to obtain the faces of different ages within groups. To this end, we propose the continuous face aging generative adversarial networks (CFA-GAN). Specifically, to make the continuous aging feasible, we propose to decompose image features into two orthogonal features: the identity and the age basis features. Moreover, we introduce the novel loss function for identity preservation which maximizes the cosine similarity between the original and the generated identity basis features. With the qualitative and quantitative evaluations on MORPH, we demonstrate the realistic and continuous aging ability of our model, validating its superiority against existing models. To the best of our knowledge, this work is the first attempt to handle continuous target ages.
There are many factors affecting visual face recognition, such as low resolution images, aging, illumination and pose variance, etc. One of the most important problem is low resolution face images which can result in bad performance on face recognition. Most of the general face recognition algorithms usually assume a sufficient resolution for the face images. However, in practice many applications often do not have sufficient image resolutions. The modern face hallucination models demonstrate reasonable performance to reconstruct high-resolution images from its corresponding low resolution images. However, they do not consider identity level information during hallucination which directly affects results of the recognition of low resolution faces. To address this issue, we propose a Face Hallucination Generative Adversarial Network (FH-GAN) which improves the quality of low resolution face images and accurately recognize those low quality images. Concretely, we make the following contributions: 1) we propose FH-GAN network, an end-to-end system, that improves both face hallucination and face recognition simultaneously. The novelty of this proposed network depends on incorporating identity information in a GAN-based face hallucination algorithm via combining a face recognition network for identity preserving. 2) We also propose a new face hallucination network, namely Dense Sparse Network (DSNet), which improves upon the state-of-art in face hallucination. 3) We demonstrate benefits of training the face recognition and GAN-based DSNet jointly by reporting good result on face hallucination and recognition.
This work tackles the face recognition task on images captured using thermal camera sensors which can operate in the non-light environment. While it can greatly increase the scope and benefits of the current security surveillance systems, performing such a task using thermal images is a challenging problem compared to face recognition task in the Visible Light Domain (VLD). This is partly due to the much smaller amount number of thermal imagery data collected compared to the VLD data. Unfortunately, direct application of the existing very strong face recognition models trained using VLD data into the thermal imagery data will not produce a satisfactory performance. This is due to the existence of the domain gap between the thermal and VLD images. To this end, we propose a Thermal-to-Visible Generative Adversarial Network (TV-GAN) that is able to transform thermal face images into their corresponding VLD images whilst maintaining identity information which is sufficient enough for the existing VLD face recognition models to perform recognition. Some examples are presented in Figure 1. Unlike the previous methods, our proposed TV-GAN uses an explicit closed-set face recognition loss to regularize the discriminator network training. This information will then be conveyed into the generator network in the forms of gradient loss. In the experiment, we show that by using this additional explicit regularization for the discriminator network, the TV-GAN is able to preserve more identity information when translating a thermal image of a person which is not seen before by the TV-GAN.
In this work, we present the Text Conditioned Auxiliary Classifier Generative Adversarial Network, (TAC-GAN) a text to image Generative Adversarial Network (GAN) for synthesizing images from their text descriptions. Former approaches have tried to condition the generative process on the textual data; but allying it to the usage of class information, known to diversify the generated samples and improve their structural coherence, has not been explored. We trained the presented TAC-GAN model on the Oxford-102 dataset of flowers, and evaluated the discriminability of the generated images with Inception-Score, as well as their diversity using the Multi-Scale Structural Similarity Index (MS-SSIM). Our approach outperforms the state-of-the-art models, i.e., its inception score is 3.45, corresponding to a relative increase of 7.8% compared to the recently introduced StackGan. A comparison of the mean MS-SSIM scores of the training and generated samples per class shows that our approach is able to generate highly diverse images with an average MS-SSIM of 0.14 over all generated classes.
Generative adversarial networks (GANs) have been a popular deep generative model for real-world applications. Despite many recent efforts on GANs that have been contributed, mode collapse and instability of GANs are still open problems caused by their adversarial optimization difficulties. In this paper, motivated by the cooperative co-evolutionary algorithm, we propose a Cooperative Dual Evolution based Generative Adversarial Network (CDE-GAN) to circumvent these drawbacks. In essence, CDE-GAN incorporates dual evolution with respect to the generator(s) and discriminators into a unified evolutionary adversarial framework to conduct effective adversarial multi-objective optimization. Thus it exploits the complementary properties and injects dual mutation diversity into training to steadily diversify the estimated density in capturing multi-modes and improve generative performance. Specifically, CDE-GAN decomposes the complex adversarial optimization problem into two subproblems (generation and discrimination), and each subproblem is solved with a separated subpopulation (E-Generator} and E-Discriminators), evolved by its own evolutionary algorithm. Additionally, we further propose a Soft Mechanism to balance the trade-off between E-Generators and E-Discriminators to conduct steady training for CDE-GAN. Extensive experiments on one synthetic dataset and three real-world benchmark image datasets demonstrate that the proposed CDE-GAN achieves a competitive and superior performance in generating good quality and diverse samples over baselines. The code and more generated results are available at our project homepage: https://shiming-chen.github.io/CDE-GAN-website/CDE-GAN.html.