Do you want to publish a course? Click here

Attributes Aware Face Generation with Generative Adversarial Networks

81   0   0.0 ( 0 )
 Added by Zheng Yuan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent studies have shown remarkable success in face image generations. However, most of the existing methods only generate face images from random noise, and cannot generate face images according to the specific attributes. In this paper, we focus on the problem of face synthesis from attributes, which aims at generating faces with specific characteristics corresponding to the given attributes. To this end, we propose a novel attributes aware face image generator method with generative adversarial networks called AFGAN. Specifically, we firstly propose a two-path embedding layer and self-attention mechanism to convert binary attribute vector to rich attribute features. Then three stacked generators generate $64 times 64$, $128 times 128$ and $256 times 256$ resolution face images respectively by taking the attribute features as input. In addition, an image-attribute matching loss is proposed to enhance the correlation between the generated images and input attributes. Extensive experiments on CelebA demonstrate the superiority of our AFGAN in terms of both qualitative and quantitative evaluations.

rate research

Read More

Generative Adversarial Networks are proved to be efficient on various kinds of image generation tasks. However, it is still a challenge if we want to generate images precisely. Many researchers focus on how to generate images with one attribute. But image generation under multiple attributes is still a tough work. In this paper, we try to generate a variety of face images under multiple constraints using a pipeline process. The Pip-GAN (Pipeline Generative Adversarial Network) we present employs a pipeline network structure which can generate a complex facial image step by step using a neutral face image. We applied our method on two face image databases and demonstrate its ability to generate convincing novel images of unseen identities under multiple conditions previously.
Face aging is the task aiming to translate the faces in input images to designated ages. To simplify the problem, previous methods have limited themselves only able to produce discrete age groups, each of which consists of ten years. Consequently, the exact ages of the translated results are unknown and it is unable to obtain the faces of different ages within groups. To this end, we propose the continuous face aging generative adversarial networks (CFA-GAN). Specifically, to make the continuous aging feasible, we propose to decompose image features into two orthogonal features: the identity and the age basis features. Moreover, we introduce the novel loss function for identity preservation which maximizes the cosine similarity between the original and the generated identity basis features. With the qualitative and quantitative evaluations on MORPH, we demonstrate the realistic and continuous aging ability of our model, validating its superiority against existing models. To the best of our knowledge, this work is the first attempt to handle continuous target ages.
We present a deep learning approach for high resolution face completion with multiple controllable attributes (e.g., male and smiling) under arbitrary masks. Face completion entails understanding both structural meaningfulness and appearance consistency locally and globally to fill in holes whose content do not appear elsewhere in an input image. It is a challenging task with the difficulty level increasing significantly with respect to high resolution, the complexity of holes and the controllable attributes of filled-in fragments. Our system addresses the challenges by learning a fully end-to-end framework that trains generative adversarial networks (GANs) progressively from low resolution to high resolution with conditional vectors encoding controllable attributes. We design novel network architectures to exploit information across multiple scales effectively and efficiently. We introduce new loss functions encouraging sharp completion. We show that our system can complete faces with large structural and appearance variations using a single feed-forward pass of computation with mean inference time of 0.007 seconds for images at 1024 x 1024 resolution. We also perform a pilot human study that shows our approach outperforms state-of-the-art face completion methods in terms of rank analysis. The code will be released upon publication.
In this paper, we propose a novel framework to translate a portrait photo-face into an anime appearance. Our aim is to synthesize anime-faces which are style-consistent with a given reference anime-face. However, unlike typical translation tasks, such anime-face translation is challenging due to complex variations of appearances among anime-faces. Existing methods often fail to transfer the styles of reference anime-faces, or introduce noticeable artifacts/distortions in the local shapes of their generated faces. We propose AniGAN, a novel GAN-based translator that synthesizes high-quality anime-faces. Specifically, a new generator architecture is proposed to simultaneously transfer color/texture styles and transform local facial shapes into anime-like counterparts based on the style of a reference anime-face, while preserving the global structure of the source photo-face. We propose a double-branch discriminator to learn both domain-specific distributions and domain-shared distributions, helping generate visually pleasing anime-faces and effectively mitigate artifacts. Extensive experiments on selfie2anime and a new face2anime dataset qualitatively and quantitatively demonstrate the superiority of our method over state-of-the-art methods. The new dataset is available at https://github.com/bing-li-ai/AniGAN .
As a sub-domain of text-to-image synthesis, text-to-face generation has huge potentials in public safety domain. With lack of dataset, there are almost no related research focusing on text-to-face synthesis. In this paper, we propose a fully-trained Generative Adversarial Network (FTGAN) that trains the text encoder and image decoder at the same time for fine-grained text-to-face generation. With a novel fully-trained generative network, FTGAN can synthesize higher-quality images and urge the outputs of the FTGAN are more relevant to the input sentences. In addition, we build a dataset called SCU-Text2face for text-to-face synthesis. Through extensive experiments, the FTGAN shows its superiority in boosting both generated images quality and similarity to the input descriptions. The proposed FTGAN outperforms the previous state of the art, boosting the best reported Inception Score to 4.63 on the CUB dataset. On SCU-text2face, the face images generated by our proposed FTGAN just based on the input descriptions is of average 59% similarity to the ground-truth, which set a baseline for text-to-face synthesis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا