Do you want to publish a course? Click here

WALOP-South: A Four Camera One Shot Imaging Polarimeter for PASIPHAE Survey. Paper I -- Optical Design

110   0   0.0 ( 0 )
 Added by Siddharth Maharana
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The WALOP-South instrument will be mounted on the 1 m SAAO telescope in South Africa as part of the PASIPHAE program to carry out a linear imaging polarization survey of the Galactic polar regions in the optical band. Designed to achieve polarimetric sensitivity of $0.05~%$ across a $35times35$ arcminute field of view, it will be capable of measuring the Stokes parameters I, q and u in a single exposure in the SDSS-r broadband and narrowband filters between $0.5~{mu}m - 0.7~{mu}m$. For each measurement, four images of the full field corresponding to linear polarization angles of 0 deg, 45 deg, 90 deg and 135 deg in the instrument coordinate system will be created on four detectors from which the Stokes parameters can be found using differential photometry. In designing the optical system, major challenges included correcting for the dispersion introduced by large split angle Wollaston Prisms used as analysers as well as other aberrations from the entire field to obtain imaging quality PSF at the detector. We present the optical design of the WALOP-South instrument which overcomes these challenges and delivers near seeing limited PSFs for the entire field of view.



rate research

Read More

WALOP (Wide-Area Linear Optical Polarimeter)-South, to be mounted on the 1m SAAO telescope in South Africa, is first of the two WALOP instruments currently under development for carrying out the PASIPHAE survey. Scheduled for commissioning in the year 2021, the WALOP instruments will be used to measure the linear polarization of around $10^{6}$ stars in the SDSS-r broadband with $0.1~%$ polarimetric accuracy, covering 4000 square degrees in the Galactic polar regions. The combined capabilities of one-shot linear polarimetry, high polarimetric accuracy ($< 0.1~%$) and polarimetric sensitivity ($< 0.05~%$), and a large field of view (FOV) of $35times35~arcminutes$ make WALOP-South a unique astronomical instrument. In a single exposure, it is designed to measure the Stokes parameters $I$, $q$ and $u$ in the SDSS-r broadband and narrowband filters between $500-700~nm$. During each measurement, four images of the full field corresponding to the polarization angles of $0^{circ}$, $45^{circ}$, $90^{circ}$ and $135^{circ}$ will be imaged on four detectors and carrying out differential photometry on these images will yield the Stokes parameters. Major challenges in designing WALOP-South instrument include- (a) in the optical design, correcting for the spectral dispersion introduced by large split angle Wollaston Prisms used as polarization analyzers as well as aberrations from the wide field, and (b) making an optomechanical design adherent to the tolerances required to obtain good imaging and polarimetric performance under all temperature conditions as well as telescope pointing positions. We present the optical and optomechanical design for WALOP-South which overcomes these challenges.
We present the design and performance of RoboPol, a four-channel optical polarimeter operating at the Skinakas Observatory in Crete, Greece. RoboPol is capable of measuring both relative linear Stokes parameters $q$ and $u$ (and the total intensity $I$) in one sky exposure. Though primarily used to measure the polarization of point sources in the R-band, the instrument features additional filters (B, V and I), enabling multi-wavelength imaging polarimetry over a large field of view (13.6 $times$ 13.6). We demonstrate the accuracy and stability of the instrument throughout its five years of operation. Best performance is achieved within the central region of the field of view and in the R band. For such measurements the systematic uncertainty is below 0.1% in fractional linear polarization, $p$ (0.05% maximum likelihood). Throughout all observing seasons the instrumental polarization varies within 0.1% in $p$ and within 1$^circ$ in polarization angle.
X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly-sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over a FoV of up to 2$pi$ sr thanks to its excellent imaging based on a well-defined point spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 $pm$ 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30$^circ$ and was not degraded compared to the 0.58 $pm$ 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. (2015) would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10$^{7}$ s exposure and over 20 GRBs down to a $6times10^{-6}$ erg cm$^{-2}$ fluence and 10% polarization during a one-year observation.
An Andor 1K $times$ 1K EMCCD detector has been used to develop an optical imaging polarimeter for use at the Cassegrain focus of 1.2 m telescope of PRL. The optics is derived from an older single-element detector instrument and consists of a rotating half-wave plate as modulator and a Foster prism as an analyser. The field of view of the instrument is 3 $times$ 3 sq arcmin. We describe the instrument and the observational methodology in this document. Extensive observations have been carried out with this instrument covering a large variety of sources e.g. near-Earth asteroids, comets, Lynds dark nebulae, open clusters and AGN such as blazars. In the current communication, we discuss some results from the initial calibration runs while the other results will be presented elsewhere.
The Keck Array (SPUD) is a set of microwave polarimeters that observes from the South Pole at degree angular scales in search of a signature of Inflation imprinted as B-mode polarization in the Cosmic Microwave Background (CMB). The first three Keck Array receivers were deployed during the 2010-2011 Austral summer, followed by two new receivers in the 2011-2012 summer season, completing the full five-receiver array. All five receivers are currently observing at 150 GHz. The Keck Array employs the field-proven BICEP/BICEP2 strategy of using small, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. We describe our efforts to characterize the main beam shape and beam shape mismatch between co-located orthogonally-polarized detector pairs, and discuss the implications of measured differential beam parameters on temperature to polarization leakage in CMB analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا