Do you want to publish a course? Click here

Optical Characterization of the Keck Array Polarimeter at the South Pole

191   0   0.0 ( 0 )
 Added by Abigail Vieregg
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Keck Array (SPUD) is a set of microwave polarimeters that observes from the South Pole at degree angular scales in search of a signature of Inflation imprinted as B-mode polarization in the Cosmic Microwave Background (CMB). The first three Keck Array receivers were deployed during the 2010-2011 Austral summer, followed by two new receivers in the 2011-2012 summer season, completing the full five-receiver array. All five receivers are currently observing at 150 GHz. The Keck Array employs the field-proven BICEP/BICEP2 strategy of using small, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. We describe our efforts to characterize the main beam shape and beam shape mismatch between co-located orthogonally-polarized detector pairs, and discuss the implications of measured differential beam parameters on temperature to polarization leakage in CMB analysis.



rate research

Read More

BICEP3 is a small-aperture refracting cosmic microwave background (CMB) telescope designed to make sensitive polarization maps in pursuit of a potential B-mode signal from inflationary gravitational waves. It is the latest in the BICEP/Keck Array series of CMB experiments at the South Pole, which has provided the most stringent constraints on inflation to date. For the 2016 observing season, BICEP3 was outfitted with a full suite of 2400 optically coupled detectors operating at 95 GHz. In these proceedings we report on the far field beam performance using calibration data taken during the 2015-2016 summer deployment season in situ with a thermal chopped source. We generate high-fidelity per-detector beam maps, show the array-averaged beam profile, and characterize the differential beam response between co-located, orthogonally polarized detectors which contributes to the leading instrumental systematic in pair differencing experiments. We find that the levels of differential pointing, beamwidth, and ellipticity are similar to or lower than those measured for BICEP2 and Keck Array. The magnitude and distribution of BICEP3s differential beam mismatch - and the level to which temperature-to-polarization leakage may be marginalized over or subtracted in analysis - will inform the design of next-generation CMB experiments with many thousands of detectors.
A detection of curl-type ($B$-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The BICEP/Keck Array (BK) program targets the degree angular scales, where the power from primordial $B$-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. BICEP Array (BA) is the Stage-3 instrument of the BK program and will comprise four BICEP3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale $B$-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full BICEP Array instrument is projected to reach $sigma_r$ between 0.002 and 0.004, depending on foreground complexity and degree of removal of $B$-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver.
The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3s $sim800$ functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence.
BICEP2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. BICEP2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). BICEP2 and the Keck Array share a common optical design and employ the field-proven BICEP1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of BICEP2 and the Keck Array at 150 GHz.
The Keck Array is a cosmic microwave background (CMB) polarimeter that will begin observing from the South Pole in late 2010. The initial deployment will consist of three telescopes similar to BICEP2 housed in ultra-compact, pulse tube cooled cryostats. Two more receivers will be added the following year. In these proceedings we report on the design and performance of the Keck cryostat. We also report some initial results on the performance of antenna-coupled TES detectors operating in the presence of a pulse tube. We find that the performance of the detectors is not seriously impacted by the replacement of BICEP2s liquid helium cryostat with a pulse tube cooled cryostat.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا