Do you want to publish a course? Click here

Quantum Transport in Two-Dimensional WS$_2$ with High-Efficiency Carrier Injection Through Indium Alloy Contacts

125   0   0.0 ( 0 )
 Added by Chit Siong Lau Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional transition metal dichalcogenides (TMDCs) have properties attractive for optoelectronic and quantum applications. A crucial element for devices is the metal-semiconductor interface. However, high contact resistances have hindered progress. Quantum transport studies are scant as low-quality contacts are intractable at cryogenic temperatures. Here, temperature-dependent transfer length measurements are performed on chemical vapour deposition grown single-layer and bilayer WS$_2$ devices with indium alloy contacts. The devices exhibit low contact resistances and Schottky barrier heights (sim10 k$Omega$si{micrometre} at 3 K and 1.7 meV). Efficient carrier injection enables high carrier mobilities ($sim$190 cm$^2$V$^{-1}$s$^{-1}$) and observation of resonant tunnelling. Density functional theory calculations provide insights into quantum transport and properties of the WS$_2$-indium interface. Our results reveal significant advances towards high-performance WS$_2$ devices using indium alloy contacts.



rate research

Read More

Atomically thin transition metal dichalcogenide crystals (TMDCs) have extraordinary optical properties that make them attractive for future optoelectronic applications. Integration of TMDCs into practical all-dielectric heterostructures hinges on the ability to passivate and protect them against necessary fabrication steps on large scales. Despite its limited scalability, encapsulation of TMDCs in hexagonal boron nitride (hBN) currently has no viable alternative for achieving high performance of the final device. Here, we show that the novel, ultrathin Ga$_2$O$_3$ glass is an ideal centimeter-scale coating material that enhances optical performance of the monolayers and protects them against further material deposition. In particular, Ga$_2$O$_3$ capping of commercial grade WS$_2$ monolayers outperforms hBN in both scalability and optical performance at room temperature. These properties make Ga$_2$O$_3$ highly suitable for large scale passivation and protection of monolayer TMDCs in functional heterostructures.
The two-dimensional (2D) semiconductor indium selenide (InSe) has attracted significant interest due its unique electronic band structure, high electron mobility and wide tunability of its band gap energy achieved by varying the layer thickness. All these features make 2D InSe a potential candidate for advanced electronic and optoelectronic applications. Here, we report on the discovery of new polymorphs of InSe with enhanced electronic properties. Using a global structure search that combines artificial swarm intelligence with first-principles energetic calculations, we identify polymorphs that consist of a centrosymmetric monolayer belonging to the point group D$_{3d}$, distinct from the well-known polymorphs based on the D$_{3h}$ monolayers that lack inversion symmetry. The new polymorphs are thermodynamically and kinetically stable, and exhibit a wider optical spectral response and larger electron mobilities compared to the known polymorphs. We discuss opportunities to synthesize these newly discovered polymorphs and viable routes to identify them by X-ray diffraction, Raman spectroscopy and second harmonic generation experiments.
We demonstrate the creation of a spin-1/2 state via the atomically controlled generation of magnetic carbon radical ions (CRIs) in synthetic two-dimensional transition metal dichalcogenides (TMDs). Hydrogenated carbon impurities located at chalcogen sites introduced by chemical doping can be activated with atomic precision by hydrogen depassivation using a scanning probe tip. In its anionic state, the carbon impurity exhibits a magnetic moment of 1 $mu_text{B}$ resulting from an unpaired electron populating a spin-polarized in-gap orbital of C$^{bullet -}_text{S}$. Fermi level control by the underlying graphene substrate can charge and decharge the defect, thereby activating or quenching the defect magnetic moment. By inelastic tunneling spectroscopy and density functional theory calculations we show that the CRI defect states couple to a small number of vibrational modes, including a local, breathing-type mode. Interestingly, the electron-phonon coupling strength critically depends on the spin state and differs for monolayer and bilayer WS$_2$. These carbon radical ions in TMDs comprise a new class of surface-bound, single-atom spin-qubits that can be selectively introduced, are spatially precise, feature a well-understood vibronic spectrum, and are charge state controlled.
We study the stability and electronic structure of previously unexplored two-dimensional (2D) ternary compounds BNP$_2$ and C$_2$SiS. Using $ab$ $initio$ density functional theory, we have identified four stable allotropes of each ternary compound and confirmed their stability by calculated phonon spectra and molecular dynamics simulations. Whereas all BNP$_2$ allotropes are semiconducting, we find C$_2$SiS, depending on the allotrope, to be semiconducting or semimetallic. The fundamental band gaps of the semiconducting allotropes we study range from $1.4$ eV to $2.2$ eV at the HSE06 level $0.5$ eV to $1.4$ eV at the PBE level and display carrier mobilities as high as $1.5{times}10^5$ cm$^2$V$^{-1}$s$^{-1}$. Such high mobilities are quite uncommon in semiconductors with so wide band gaps. Structural ridges in the geometry of all allotropes cause a high anisotropy in their mechanical and transport properties, promising a wide range of applications in electronics and optoelectronics.
A mismatch of atomic registries between single-layer transition metal dichalcogenides (TMDs) in a two dimensional van der Waals heterostructure produces a moire superlattice with a periodic potential, which can be fine-tuned by introducing a twist angle between the materials. This approach is promising both for controlling the interactions between the TMDs and for engineering their electronic band structures, yet direct observation of the changes to the electronic structure introduced with varying twist angle has so far been missing. Here, we probe heterobilayers comprised of single-layer MoS$_2$ and WS$_2$ with twist angles of $(2.0 pm 0.5)^{circ}$, $(13.0 pm 0.5)^{circ}$, and $(20.0 pm 0.5)^{circ}$ and investigate the differences in their electronic band structure using micro-focused angle-resolved photoemission spectroscopy. We find strong interlayer hybridization between MoS$_2$ and WS$_2$ electronic states at the $bar{mathrm{Gamma}}$-point of the Brillouin zone, leading to a transition from a direct bandgap in the single-layer to an indirect gap in the heterostructure. Replicas of the hybridized states are observed at the centre of twist angle-dependent moire mini Brillouin zones. We confirm that these replica features arise from the inherent moire potential by comparing our experimental observations with density functional theory calculations of the superlattice dispersion. Our direct visualization of these features underscores the potential of using twisted heterobilayer semiconductors to engineer hybrid electronic states and superlattices that alter the electronic and optical properties of 2D heterostructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا