Do you want to publish a course? Click here

Vibronic response of a spin-1/2 state from a carbon impurity in two-dimensional WS$_2$

93   0   0.0 ( 0 )
 Added by Bruno Schuler
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate the creation of a spin-1/2 state via the atomically controlled generation of magnetic carbon radical ions (CRIs) in synthetic two-dimensional transition metal dichalcogenides (TMDs). Hydrogenated carbon impurities located at chalcogen sites introduced by chemical doping can be activated with atomic precision by hydrogen depassivation using a scanning probe tip. In its anionic state, the carbon impurity exhibits a magnetic moment of 1 $mu_text{B}$ resulting from an unpaired electron populating a spin-polarized in-gap orbital of C$^{bullet -}_text{S}$. Fermi level control by the underlying graphene substrate can charge and decharge the defect, thereby activating or quenching the defect magnetic moment. By inelastic tunneling spectroscopy and density functional theory calculations we show that the CRI defect states couple to a small number of vibrational modes, including a local, breathing-type mode. Interestingly, the electron-phonon coupling strength critically depends on the spin state and differs for monolayer and bilayer WS$_2$. These carbon radical ions in TMDs comprise a new class of surface-bound, single-atom spin-qubits that can be selectively introduced, are spatially precise, feature a well-understood vibronic spectrum, and are charge state controlled.



rate research

Read More

Atomically thin transition metal dichalcogenide crystals (TMDCs) have extraordinary optical properties that make them attractive for future optoelectronic applications. Integration of TMDCs into practical all-dielectric heterostructures hinges on the ability to passivate and protect them against necessary fabrication steps on large scales. Despite its limited scalability, encapsulation of TMDCs in hexagonal boron nitride (hBN) currently has no viable alternative for achieving high performance of the final device. Here, we show that the novel, ultrathin Ga$_2$O$_3$ glass is an ideal centimeter-scale coating material that enhances optical performance of the monolayers and protects them against further material deposition. In particular, Ga$_2$O$_3$ capping of commercial grade WS$_2$ monolayers outperforms hBN in both scalability and optical performance at room temperature. These properties make Ga$_2$O$_3$ highly suitable for large scale passivation and protection of monolayer TMDCs in functional heterostructures.
Two-dimensional transition metal dichalcogenides (TMDCs) have properties attractive for optoelectronic and quantum applications. A crucial element for devices is the metal-semiconductor interface. However, high contact resistances have hindered progress. Quantum transport studies are scant as low-quality contacts are intractable at cryogenic temperatures. Here, temperature-dependent transfer length measurements are performed on chemical vapour deposition grown single-layer and bilayer WS$_2$ devices with indium alloy contacts. The devices exhibit low contact resistances and Schottky barrier heights (sim10 k$Omega$si{micrometre} at 3 K and 1.7 meV). Efficient carrier injection enables high carrier mobilities ($sim$190 cm$^2$V$^{-1}$s$^{-1}$) and observation of resonant tunnelling. Density functional theory calculations provide insights into quantum transport and properties of the WS$_2$-indium interface. Our results reveal significant advances towards high-performance WS$_2$ devices using indium alloy contacts.
Single layers of transition metal dichalcogenides (TMDs) are direct gap semiconductors with nondegenerate valley indices. An intriguing possibility for these materials is the use of their valley index as an alternate state variable. Several limitations to such a utility include strong, phonon-enabled intervalley scattering, as well as multiparticle interactions leading to multiple emission channels. We prepare single-layer WS$_{2}$ such that the photoluminescence is from either the neutral or charged exciton (trion). After excitation with circularly polarized light, the neutral exciton emission has zero polarization, however, the trion emission has a large polarization (28%) at room temperature. The trion emission also has a unique, non-monotonic temperature dependence that we show is a consequence of the multiparticle nature of the trion. This temperature dependence enables us to determine that coulomb assisted intervalley scattering, electron-hole radiative recombination, and a 3-particle Auger process are the dominant mechanisms at work in this system. Because this dependence involves trion systems, one can use gate voltages to modulate the polarization (or intensity) emitted from TMD structures.
While crystalline two-dimensional materials have become an experimental reality during the past few years, an amorphous 2-D material has not been reported before. Here, using electron irradiation we create an sp2-hybridized one-atom-thick flat carbon membrane with a random arrangement of polygons, including four-membered carbon rings. We show how the transformation occurs step-by-step by nucleation and growth of low-energy multi-vacancy structures constructed of rotated hexagons and other polygons. Our observations, along with first-principles calculations, provide new insights to the bonding behavior of carbon and dynamics of defects in graphene. The created domains possess a band gap, which may open new possibilities for engineering graphene-based electronic devices.
The spin structure of the valence and conduction bands at the $overline{text{K}}$ and $overline{text{K}}$ valleys of single-layer WS$_2$ on Au(111) is determined by spin- and angle-resolved photoemission and inverse photoemission. The bands confining the direct band gap of 1.98 eV are out-of-plane spin polarized with spin-dependent energy splittings of 417 meV in the valence band and 16 meV in the conduction band. The sequence of the spin-split bands is the same in the valence and in the conduction bands and opposite at the $overline{text{K}}$ and the $overline{text{K}}$ high-symmetry points. The first observation explains dark excitons discussed in optical experiments, the latter points to coupled spin and valley physics in electron transport. The experimentally observed band dispersions are discussed along with band structure calculations for a freestanding single layer and for a single layer on Au(111).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا