No Arabic abstract
Metasurfaces are ultrathin nanostructured surfaces that can allow arbitrary manipulation of light. Implementing dynamic tunability into their design could allow the optical functions of metasurfaces to be rapidly modified at will. The most pronounced and robust tunability of optical properties is provided by phase-change materials such as vanadium dioxide (VO2) and germanium antimony telluride (GST), but their implementations have been limited only to near-infrared wavelengths. Here, we demonstrate that VO2 nanoantennas with widely tunable Mie resonances can be utilized for designing tunable metasurfaces in the visible range. In contrast to the dielectric-metallic phase transition-induced tunability in previous demonstrations, we show that dielectric Mie resonances in VO2 nanoantennas offer remarkable scattering and extinction modulation depths (5-8 dB and 1-3 dB, respectively) for tunability in the visible. Moreover, these strong resonances are optically switchable using a continuous-wave laser. Our results establish VO2 nanostructures as low-loss building blocks of optically tunable metasurfaces.
Dielectric optical nanoantennas play an important role in color displays, metasurface holograms, and wavefront shaping applications. They usually exploit Mie resonances as supported on nanostructures with high refractive index, such as Si and TiO2. However, these resonances normally cannot be tuned. Although phase change materials, such as the germanium-antimony-tellurium alloys and post transition metal oxides, such as ITO, have been used to tune optical antennas in the near infrared spectrum, tunable dielectric antennae in the visible spectrum remain to be demonstrated. In this paper, we designed and experimentally demonstrated tunable dielectric nanoantenna arrays with Mie resonances in the visible spectrum, exploiting phase transitions in wide-bandgap Sb2S3 nano-resonators. In the amorphous state, Mie resonances in these Sb2S3 nanostructures give rise to a strong structural color in reflection mode. Thermal annealing induced crystallization and laser induced amorphization of the Sb2S3 resonators allow the color to be tuned reversibly. We believe these tunable Sb2S3 nanoantennae arrays will enable a wide variety of tunable nanophotonic applications, such as high-resolution color displays, holographic displays, and miniature LiDAR systems.
We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of structured metamaterial elements (metamolecules) and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.
Artificial magnetic fields are revolutionizing our ability to manipulate neutral particles, by enabling the emulation of exotic phenomena once thought to be exclusive to charged particles. In particular, pseudo-magnetic fields generated by nonuniform strain in artificial lattices have attracted considerable interest because of their simple geometrical origin. However, to date, these strain-induced pseudo-magnetic fields have failed to emulate the tunability of real magnetic fields because they are dictated solely by the strain configuration. Here, we overcome this apparent limitation for polaritons supported by strained metasurfaces, which can be realized with classical dipole antennas or quantum dipole emitters. Without altering the strain configuration, we unveil how one can tune the pseudo-magnetic field by modifying the electromagnetic environment via an enclosing photonic cavity which modifies the nature of the interactions between the dipoles. Remarkably, due to the competition between short-range Coulomb interactions and long-range photon-mediated interactions, we find that the pseudo-magnetic field can be entirely switched off at a critical cavity height for any strain configuration. Consequently, by varying only the cavity height, we demonstrate a tunable Lorentz-like force that can be switched on/off and an unprecedented collapse and revival of polariton Landau levels. Unlocking this tunable pseudo-magnetism for the first time poses new intriguing questions beyond the paradigm of conventional tight-binding physics.
As two-dimensional metamaterials, metasurfaces open up new avenues for designing static planar optics. However, the dynamic modulation of metasurfaces in the optical band is required for practical applications. The existing dynamic devices rarely utilized the polarization manipulation capability of metasurfaces. Here, we demonstrate an electrically tunable multifunctional metasurface in the visible range by integrating birefringent liquid crystals (LCs) with all-dielectric metasurfaces based on a novel packaging scheme. By combining the helicity-dependent geometric phase of the metasurface and the polarization control ability of LC molecules, continuous intensity tuning and switching of two helicity channels are realized. Electrically tunable single-channel switchable metaholograms, multicolor multiplexed metaholograms, and dynamic varifocal metalenses are designed to verify the concept. The exploration of polarization control in dynamic tuning can pave the way for dynamic metasurface devices in various applications, such as space light modulators, light detection and ranging systems, and holographic displays.
Bound states in the continuum (BICs) represent localized modes with energies embedded in the continuous spectrum of radiating waves. BICs were discovered initially as a mathematical curiosity in quantum mechanics, and more recently were employed in photonics. Pure mathematical bound states have infinitely-large quality factors (Q factors) and zero resonant linewidth. In optics, BICs are physically limited by a finite size, material absorption, structural disorder, and surface scattering, and they manifest themselves as the resonant states with large Q factors, also known as supercavity modes or quasi-BICs. Optical BIC resonances have been demonstrated only in extended 2D and 1D systems and have been employed for distinct applications including lasing and sensing. Optical quasi-BIC modes in individual nanoresonators have been discovered recently but they were never observed in experiment. Here, we demonstrate experimentally an isolated subwavelength nanoresonator hosting a quasi-BIC resonance. We fabricate the resonator from AlGaAs material on an engineered substrate, and couple to the quasi-BIC mode using structured light. We employ the resonator as a nonlinear nanoantenna and demonstrate record-high efficiency of second-harmonic generation. Our study brings a novel platform to resonant subwavelength photonics.