No Arabic abstract
This paper introduces the unsupervised learning problem of playable video generation (PVG). In PVG, we aim at allowing a user to control the generated video by selecting a discrete action at every time step as when playing a video game. The difficulty of the task lies both in learning semantically consistent actions and in generating realistic videos conditioned on the user input. We propose a novel framework for PVG that is trained in a self-supervised manner on a large dataset of unlabelled videos. We employ an encoder-decoder architecture where the predicted action labels act as bottleneck. The network is constrained to learn a rich action space using, as main driving loss, a reconstruction loss on the generated video. We demonstrate the effectiveness of the proposed approach on several datasets with wide environment variety. Further details, code and examples are available on our project page willi-menapace.github.io/playable-video-generation-website.
In this demo, we present VirtualConductor, a system that can generate conducting video from any given music and a single users image. First, a large-scale conductor motion dataset is collected and constructed. Then, we propose Audio Motion Correspondence Network (AMCNet) and adversarial-perceptual learning to learn the cross-modal relationship and generate diverse, plausible, music-synchronized motion. Finally, we combine 3D animation rendering and a pose transfer model to synthesize conducting video from a single given users image. Therefore, any user can become a virtual conductor through the system.
This paper introduces Click to Move (C2M), a novel framework for video generation where the user can control the motion of the synthesized video through mouse clicks specifying simple object trajectories of the key objects in the scene. Our model receives as input an initial frame, its corresponding segmentation map and the sparse motion vectors encoding the input provided by the user. It outputs a plausible video sequence starting from the given frame and with a motion that is consistent with user input. Notably, our proposed deep architecture incorporates a Graph Convolution Network (GCN) modelling the movements of all the objects in the scene in a holistic manner and effectively combining the sparse user motion information and image features. Experimental results show that C2M outperforms existing methods on two publicly available datasets, thus demonstrating the effectiveness of our GCN framework at modelling object interactions. The source code is publicly available at https://github.com/PierfrancescoArdino/C2M.
Temporal grounding aims to predict a time interval of a video clip corresponding to a natural language query input. In this work, we present EVOQUER, a temporal grounding framework incorporating an existing text-to-video grounding model and a video-assisted query generation network. Given a query and an untrimmed video, the temporal grounding model predicts the target interval, and the predicted video clip is fed into a video translation task by generating a simplified version of the input query. EVOQUER forms closed-loop learning by incorporating loss functions from both temporal grounding and query generation serving as feedback. Our experiments on two widely used datasets, Charades-STA and ActivityNet, show that EVOQUER achieves promising improvements by 1.05 and 1.31 at
[email protected]. We also discuss how the query generation task could facilitate error analysis by explaining temporal grounding model behavior.
Generative models that can model and predict sequences of future events can, in principle, learn to capture complex real-world phenomena, such as physical interactions. However, a central challenge in video prediction is that the future is highly uncertain: a sequence of past observations of events can imply many possible futures. Although a number of recent works have studied probabilistic models that can represent uncertain futures, such models are either extremely expensive computationally as in the case of pixel-level autoregressive models, or do not directly optimize the likelihood of the data. To our knowledge, our work is the first to propose multi-frame video prediction with normalizing flows, which allows for direct optimization of the data likelihood, and produces high-quality stochastic predictions. We describe an approach for modeling the latent space dynamics, and demonstrate that flow-based generative models offer a viable and competitive approach to generative modelling of video.
With the tremendous growth of videos over the Internet, video thumbnails, providing video content previews, are becoming increasingly crucial to influencing users online searching experiences. Conventional video thumbnails are generated once purely based on the visual characteristics of videos, and then displayed as requested. Hence, such video thumbnails, without considering the users searching intentions, cannot provide a meaningful snapshot of the video contents that users concern. In this paper, we define a distinctively new task, namely sentence specified dynamic video thumbnail generation, where the generated thumbnails not only provide a concise preview of the original video contents but also dynamically relate to the users searching intentions with semantic correspondences to the users query sentences. To tackle such a challenging task, we propose a novel graph convolved video thumbnail pointer (GTP). Specifically, GTP leverages a sentence specified video graph convolutional network to model both the sentence-video semantic interaction and the internal video relationships incorporated with the sentence information, based on which a temporal conditioned pointer network is then introduced to sequentially generate the sentence specified video thumbnails. Moreover, we annotate a new dataset based on ActivityNet Captions for the proposed new task, which consists of 10,000+ video-sentence pairs with each accompanied by an annotated sentence specified video thumbnail. We demonstrate that our proposed GTP outperforms several baseline methods on the created dataset, and thus believe that our initial results along with the release of the new dataset will inspire further research on sentence specified dynamic video thumbnail generation. Dataset and code are available at https://github.com/yytzsy/GTP.