Do you want to publish a course? Click here

Rotational Resonances and Regge Trajectories in Lightly Doped Antiferromagnets

168   0   0.0 ( 0 )
 Added by Fabian Grusdt
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the nature of charge carriers in doped Mott insulators holds the key to unravelling puzzling properties of strongly correlated electron systems, including cuprate superconductors. Several theoretical models suggested that dopants can be understood as bound states of partons, the analogues of quarks in high-energy physics. However, direct signatures of spinon-chargon bound states are lacking, both in experiment and theory. Here we numerically identify long-lived rotational resonances at low doping, which directly reveal the microscopic structure of spinon-chargon bound states. Similar to Regge trajectories reflecting the quark structure of mesons, we establish a linear dependence of the rotational energy on the super-exchange coupling. Rotational excitations are strongly suppressed in standard angle-resolved photo-emission (ARPES) spectra, but we propose a multi-photon rotational extension of ARPES where they have strong spectral weight. Our findings suggest that multi-photon spectroscopy experiments should provide new insights into emergent universal features of strongly correlated electron systems.



rate research

Read More

It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators. The physics of the parent state seems deceivingly simple: The hopping of the electrons from site to site is prohibited because their on-site Coulomb repulsion U is larger than the kinetic energy gain t. When doping these materials by inserting a small percentage of extra carriers, the electrons become mobile but the strong correlations from the Mott state are thought to survive; inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor whether these phenomena are mere distractions specific to hole-doped cuprates or represent the genuine physics of doped Mott insulators. Here, we visualize the evolution of the electronic states of (Sr1-xLax)2IrO4, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different. Using spectroscopic-imaging STM, we find that for doping concentration of x=5%, an inhomogeneous, phase separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same glassy electronic order that is so iconic for the underdoped cuprates. Further, we illuminate the genesis of this state using the unique possibility to localize dopant atoms on topographs in these samples. At low doping, we find evidence for much deeper trapping of carriers compared to the cuprates. This leads to fully gapped spectra with the chemical potential at mid-gap, which abruptly collapse at a threshold of around 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators.
We describe square lattice spin liquids which break time-reversal symmetry, while preserving translational symmetry. The states are distinguished by the manner in which they transform under mirror symmetries. All the states have non-zero scalar spin chirality, which implies the appearance of spontaneous orbital charge currents in the bulk (even in the insulator); but in some cases, orbital currents are non-zero only in a formulation with three orbitals per unit cell. The states are formulated using both the bosonic and fermionic spinon approaches. We describe states with $mathbb{Z}_2$ and U(1) bulk topological order, and the chiral spin liquid with semionic excitations. The chiral spin liquid has no orbital currents in the one-band formulation, but does have orbital currents in the three-band formulation. We discuss application to the cuprate superconductors, after postulating that the broken time-reversal and mirror symmetries persist into confining phases which may also break other symmetries. In particular, the broken symmetries of the chiral spin liquid could persist into the Neel state.
The properties of mobile impurities in quantum magnets are fundamental for our understanding of strongly correlated materials and may play a key role in the physics of high-temperature superconductivity. Hereby, the motion of hole-like defects through an antiferromagnet has been of particular importance. It creates magnetic frustrations that lead to the formation of a quasiparticle, whose complex structure continues to pose substantial challenges to theory and numerical simulations. In this article, we develop a non-perturbative theoretical approach to describe the microscopic properties of such magnetic polarons. Based on the self-consistent Born approximation, which is provenly accurate in the strong-coupling regime, we obtain a complete description of the polaron wave function by solving a set of Dyson-like equations that permit to compute relevant spin-hole correlation functions. We apply this new method to analyze the spatial structure of magnetic polarons in the strongly interacting regime and find qualitative differences from predictions of previously applied truncation schemes. Our calculations reveal a remarkably high spatial symmetry of the polaronic magnetization cloud and a surprising misalignment between its orientation and the polaron crystal momentum. The developed framework opens up a new approach to the microscopic properties of doped quantum magnets and will enable detailed analyses of ongoing experiments based on cold-atom quantum simulations of the Fermi-Hubbard model.
Inelastic neutron scattering (INS), electron spin (ESR) and nuclear magnetic resonance (NMR) measurements were employed to establish the origin of the strong magnetic signal in lightly hole-doped La_{1-x}Sr_xCoO_3, x=0.002. Both, INS and ESR low temperature spectra show intense excitations with large effective g-factors ~10-18. NMR data indicate the creation of extended magnetic clusters. From the Q-dependence of the INS magnetic intensity we conclude that the observed anomalies are caused by the formation of octahedrally shaped spin-state polarons comprising seven Co ions.
86 - Su-Peng Kou , Z.Y. Weng 2004
We show that lightly doped holes will be self-trapped in an antiferromagnetic spin background at low-temperatures, resulting in a spontaneous translational symmetry breaking. The underlying Mott physics is responsible for such novel self-localization of charge carriers. Interesting transport and dielectric properties are found as the consequences, including large doping-dependent thermopower and dielectric constant, low-temperature variable-range-hopping resistivity, as well as high-temperature strange-metal-like resistivity, which are consistent with experimental measurements in the high-T$_c$ cuprates. Disorder and impurities only play a minor and assistant role here.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا