Do you want to publish a course? Click here

The spatial structure of magnetic polarons in strongly interacting antiferromagnets

107   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The properties of mobile impurities in quantum magnets are fundamental for our understanding of strongly correlated materials and may play a key role in the physics of high-temperature superconductivity. Hereby, the motion of hole-like defects through an antiferromagnet has been of particular importance. It creates magnetic frustrations that lead to the formation of a quasiparticle, whose complex structure continues to pose substantial challenges to theory and numerical simulations. In this article, we develop a non-perturbative theoretical approach to describe the microscopic properties of such magnetic polarons. Based on the self-consistent Born approximation, which is provenly accurate in the strong-coupling regime, we obtain a complete description of the polaron wave function by solving a set of Dyson-like equations that permit to compute relevant spin-hole correlation functions. We apply this new method to analyze the spatial structure of magnetic polarons in the strongly interacting regime and find qualitative differences from predictions of previously applied truncation schemes. Our calculations reveal a remarkably high spatial symmetry of the polaronic magnetization cloud and a surprising misalignment between its orientation and the polaron crystal momentum. The developed framework opens up a new approach to the microscopic properties of doped quantum magnets and will enable detailed analyses of ongoing experiments based on cold-atom quantum simulations of the Fermi-Hubbard model.



rate research

Read More

We produce a trimerized kagome lattice for ultracold atoms using an optical superlattice formed by overlaying triangular lattices generated with two colors of light at a 2:1 wavelength ratio. Adjusting the depth of each lattice tunes the strong intra-trimer (J) and weak inter-trimer (J) tunneling energies, and also the on-site interaction energy U. Two different trimerization patterns are distinguished using matter-wave diffraction. We characterize the coherence of a strongly interacting Bose gas in this lattice, observing persistent nearest-neighbor spatial coherence in the large U/J limit, and that such coherence displays asymmetry between the strongly and the weakly coupled bonds.
When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of $^{87}$Rb with a much lower density gas of fermionic $^{40}$K impurities. Through the use of a Feshbach resonance and RF spectroscopy, we characterize the energy, spectral width and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length formally diverges.
A combined analytical and numerical study is performed of the mapping between strongly interacting fermions and weakly interacting spins, in the framework of the Hubbard, t-J and Heisenberg models. While for spatially homogeneous models in the thermodynamic limit the mapping is thoroughly understood, we here focus on aspects that become relevant in spatially inhomogeneous situations, such as the effect of boundaries, impurities, superlattices and interfaces. We consider parameter regimes that are relevant for traditional applications of these models, such as electrons in cuprates and manganites, and for more recent applications to atoms in optical lattices. The rate of the mapping as a function of the interaction strength is determined from the Bethe-Ansatz for infinite systems and from numerical diagonalization for finite systems. We show analytically that if translational symmetry is broken through the presence of impurities, the mapping persists and is, in a certain sense, as local as possible, provided the spin-spin interaction between two sites of the Heisenberg model is calculated from the harmonic mean of the onsite Coulomb interaction on adjacent sites of the Hubbard model. Numerical calculations corroborate these findings also in interfaces and superlattices, where analytical calculations are more complicated.
We study the energy and entanglement dynamics of $(1+1)$D conformal field theories (CFTs) under a Floquet drive with the sine-square deformed (SSD) Hamiltonian. Previous work has shown this model supports both a non-heating and a heating phase. Here we analytically establish several robust and `super-universal features of the heating phase which rely on conformal invariance but not on the details of the CFT involved. First, we show the energy density is concentrated in two peaks in real space, a chiral and anti-chiral peak, which leads to an exponential growth in the total energy. The peak locations are set by fixed points of the Mobius transformation. Second, all of the quantum entanglement is shared between these two peaks. In each driving period, a number of Bell pairs are generated, with one member pumped to the chiral peak, and the other member pumped to the anti-chiral peak. These Bell pairs are localized and accumulate at these two peaks, and can serve as a source of quantum entanglement. Third, in both the heating and non-heating phases we find that the total energy is related to the half system entanglement entropy by a simple relation $E(t)propto c exp left( frac{6}{c}S(t) right)$ with $c$ being the central charge. In addition, we show that the non-heating phase, in which the energy and entanglement oscillate in time, is unstable to small fluctuations of the driving frequency in contrast to the heating phase. Finally, we point out an analogy to the periodically driven harmonic oscillator which allows us to understand global features of the phases, and introduce a quasiparticle picture to explain the spatial structure, which can be generalized to setups beyond the SSD construction.
167 - A. Bohrdt , E. Demler , F. Grusdt 2021
Understanding the nature of charge carriers in doped Mott insulators holds the key to unravelling puzzling properties of strongly correlated electron systems, including cuprate superconductors. Several theoretical models suggested that dopants can be understood as bound states of partons, the analogues of quarks in high-energy physics. However, direct signatures of spinon-chargon bound states are lacking, both in experiment and theory. Here we numerically identify long-lived rotational resonances at low doping, which directly reveal the microscopic structure of spinon-chargon bound states. Similar to Regge trajectories reflecting the quark structure of mesons, we establish a linear dependence of the rotational energy on the super-exchange coupling. Rotational excitations are strongly suppressed in standard angle-resolved photo-emission (ARPES) spectra, but we propose a multi-photon rotational extension of ARPES where they have strong spectral weight. Our findings suggest that multi-photon spectroscopy experiments should provide new insights into emergent universal features of strongly correlated electron systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا