No Arabic abstract
We show that lightly doped holes will be self-trapped in an antiferromagnetic spin background at low-temperatures, resulting in a spontaneous translational symmetry breaking. The underlying Mott physics is responsible for such novel self-localization of charge carriers. Interesting transport and dielectric properties are found as the consequences, including large doping-dependent thermopower and dielectric constant, low-temperature variable-range-hopping resistivity, as well as high-temperature strange-metal-like resistivity, which are consistent with experimental measurements in the high-T$_c$ cuprates. Disorder and impurities only play a minor and assistant role here.
How a Mott insulator develops into a weakly coupled metal upon doping is a central question to understanding various emergent correlated phenomena. To analyze this evolution and its connection to the high-$T_c$ cuprates, we study the single-particle spectrum for the doped Hubbard model using cluster perturbation theory on superclusters. Starting from extremely low doping, we identify a heavily renormalized quasiparticle dispersion that immediately develops across the Fermi level, and a weakening polaronic side band at higher binding energy. The quasiparticle spectral weight roughly grows at twice the rate of doping in the low doping regime, but this rate is halved at optimal doping. In the heavily doped regime, we find both strong electron-hole asymmetry and a persistent presence of Mott spectral features. Finally, we discuss the applicability of the single-band Hubbard model to describe the evolution of nodal spectra measured by angle-resolved photoemission spectroscopy (ARPES) on the single-layer cuprate La$_{2-x}$Sr$_x$CuO$_4$ ($0 le x le 0.15$). This work benchmarks the predictive power of the Hubbard model for electronic properties of high-$T_c$ cuprates.
It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators. The physics of the parent state seems deceivingly simple: The hopping of the electrons from site to site is prohibited because their on-site Coulomb repulsion U is larger than the kinetic energy gain t. When doping these materials by inserting a small percentage of extra carriers, the electrons become mobile but the strong correlations from the Mott state are thought to survive; inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor whether these phenomena are mere distractions specific to hole-doped cuprates or represent the genuine physics of doped Mott insulators. Here, we visualize the evolution of the electronic states of (Sr1-xLax)2IrO4, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different. Using spectroscopic-imaging STM, we find that for doping concentration of x=5%, an inhomogeneous, phase separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same glassy electronic order that is so iconic for the underdoped cuprates. Further, we illuminate the genesis of this state using the unique possibility to localize dopant atoms on topographs in these samples. At low doping, we find evidence for much deeper trapping of carriers compared to the cuprates. This leads to fully gapped spectra with the chemical potential at mid-gap, which abruptly collapse at a threshold of around 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators.
The evolution from an anomalous metallic phase to a Mott insulator within the two-dimensional Hubbard model is investigated by means of the Cellular Dynamical Mean-Field Theory. We show that the density-driven Mott metal-insulator transition is approached in a non-uniform way in different regions of the momentum space. This gives rise to a breakup of the Fermi surface and to the formation of hot and cold regions, whose position depends on the hole or electron like nature of the carriers in the system.
The issues of single particle coherence and its interplay with singlet pairing are studied within the slave boson gauge theory of a doped Mott insulator. Prior work by one of us (T. Senthil, arXiv:0804.1555) showed that the coherence scale below which Landau quasiparticles emerge is parametrically lower than that identified in the slave boson mean field theory. Here we study the resulting new non-fermi liquid intermediate temperature regime characterized by a single particle scattering rate that is linear in temperature ($T$). In the presence of a d-wave pair amplitude this leads to a pseudogap state with $T$ dependent Fermi arcs near the nodal direction. Implications for understanding the cuprates are discussed.
The in-plane and out-of-plane magnetoresistance (MR) of single crystals of La_2CuO_4, lightly doped (x=0.03) with either Sr (La_{2-x}Sr_xCuO_4) or Li (La_2Cu_{1-x}Li_xO_4), have been measured in the fields applied parallel and perpendicular to the CuO_2 planes. Both La_{1.97}Sr_{0.03}CuO_4 and La_2Cu_{0.97}Li_{0.03}O_4 exhibit the emergence of a positive MR at temperatures (T) well below the spin glass (SG) transition temperature T_{sg}, where charge dynamics is also glassy. This positive MR grows as T->0 and shows hysteresis and memory. In this regime, the in-plane resistance R_{ab}(T,B) is described by a scaling function, suggesting that short-range Coulomb repulsion between two holes in the same disorder-localized state plays a key role at low T. The results highlight similarities between this magnetic material and a broad class of well-studied, nonmagnetic disordered insulators.