Do you want to publish a course? Click here

Local discontinuous Galerkin method for the fractional diffusion equation with integral fractional Laplacian

93   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we provide a framework of designing the local discontinuous Galerkin scheme for integral fractional Laplacian $(-Delta)^{s}$ with $sin(0,1)$ in two dimensions. We theoretically prove and numerically verify the numerical stability and convergence of the scheme with the convergence rate no worse than $mathcal{O}(h^{k+frac{1}{2}})$.



rate research

Read More

132 - Leilei Wei , Yinnian He 2020
The tempered fractional diffusion equation could be recognized as the generalization of the classic fractional diffusion equation that the truncation effects are included in the bounded domains. This paper focuses on designing the high order fully discrete local discontinuous Galerkin (LDG) method based on the generalized alternating numerical fluxes for the tempered fractional diffusion equation. From a practical point of view, the generalized alternating numerical flux which is different from the purely alternating numerical flux has a broader range of applications. We first design an efficient finite difference scheme to approximate the tempered fractional derivatives and then a fully discrete LDG method for the tempered fractional diffusion equation. We prove that the scheme is unconditionally stable and convergent with the order $O(h^{k+1}+tau^{2-alpha})$, where $h, tau$ and $k$ are the step size in space, time and the degree of piecewise polynomials, respectively. Finally numerical experimets are performed to show the effectiveness and testify the accuracy of the method.
137 - Lijing Zhao , Xudong Wang 2019
In this paper, we focus on designing a well-conditioned Glarkin spectral methods for solving a two-sided fractional diffusion equations with drift, in which the fractional operators are defined neither in Riemann-Liouville nor Caputo sense, and its physical meaning is clear. Based on the image spaces of Riemann-Liouville fractional integral operators on $L_p([a,b])$ space discussed in our previous work, after a step by step deduction, three kinds of Galerkin spectral formulations are proposed, the final obtained corresponding scheme of which shows to be well-conditioned---the condition number of the stiff matrix can be reduced from $O(N^{2alpha})$ to $O(N^{alpha})$, where $N$ is the degree of the polynomials used in the approximation. Another point is that the obtained schemes can also be applied successfully to approximate fractional Laplacian with generalized homogeneous boundary conditions, whose fractional order $alphain(0,2)$, not only having to be limited to $alphain(1,2)$. Several numerical experiments demonstrate the effectiveness of the derived schemes. Besides, based on the numerical results, we can observe the behavior of mean first exit time, an interesting quantity that can provide us with a further understanding about the mechanism of abnormal diffusion.
In this paper, we propose a fast spectral-Galerkin method for solving PDEs involving integral fractional Laplacian in $mathbb{R}^d$, which is built upon two essential components: (i) the Dunford-Taylor formulation of the fractional Laplacian; and (ii) Fourier-like bi-orthogonal mapped Chebyshev functions (MCFs) as basis functions. As a result, the fractional Laplacian can be fully diagonalised, and the complexity of solving an elliptic fractional PDE is quasi-optimal, i.e., $O((Nlog_2N)^d)$ with $N$ being the number of modes in each spatial direction. Ample numerical tests for various decaying exact solutions show that the convergence of the fast solver perfectly matches the order of theoretical error estimates. With a suitable time-discretization, the fast solver can be directly applied to a large class of nonlinear fractional PDEs. As an example, we solve the fractional nonlinear Schr{o}dinger equation by using the fourth-order time-splitting method together with the proposed MCF-spectral-Galerkin method.
85 - Yiqi Gu , Micheal K. Ng 2021
In this paper, we propose a novel method for solving high-dimensional spectral fractional Laplacian equations. Using the Caffarelli-Silvestre extension, the $d$-dimensional spectral fractional equation is reformulated as a regular partial differential equation of dimension $d+1$. We transform the extended equation as a minimal Ritz energy functional problem and search for its minimizer in a special class of deep neural networks. Moreover, based on the approximation property of networks, we establish estimates on the error made by the deep Ritz method. Numerical results are reported to demonstrate the effectiveness of the proposed method for solving fractional Laplacian equations up to ten dimensions.
188 - Leilei Wei , Yinnian He 2012
In this paper, a fully discrete local discontinuous Galerkin (LDG) finite element method is considered for solving the time-fractional KdV-Burgers-Kuramoto (KBK) equation. The scheme is based on a finite difference method in time and local discontinuous Galerkin methods in space. We prove that our scheme is unconditional stable and $L^2$ error estimate for the linear case with the convergence rate $O(h^{k+1}+(Delta t)^2+(Delta t)^frac{alpha}{2}h^{k+1/2})$. Numerical examples are presented to show the efficiency and accuracy of our scheme.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا