No Arabic abstract
In this paper, we propose a novel method for solving high-dimensional spectral fractional Laplacian equations. Using the Caffarelli-Silvestre extension, the $d$-dimensional spectral fractional equation is reformulated as a regular partial differential equation of dimension $d+1$. We transform the extended equation as a minimal Ritz energy functional problem and search for its minimizer in a special class of deep neural networks. Moreover, based on the approximation property of networks, we establish estimates on the error made by the deep Ritz method. Numerical results are reported to demonstrate the effectiveness of the proposed method for solving fractional Laplacian equations up to ten dimensions.
In this paper, we provide a framework of designing the local discontinuous Galerkin scheme for integral fractional Laplacian $(-Delta)^{s}$ with $sin(0,1)$ in two dimensions. We theoretically prove and numerically verify the numerical stability and convergence of the scheme with the convergence rate no worse than $mathcal{O}(h^{k+frac{1}{2}})$.
Using deep neural networks to solve PDEs has attracted a lot of attentions recently. However, why the deep learning method works is falling far behind its empirical success. In this paper, we provide a rigorous numerical analysis on deep Ritz method (DRM) cite{wan11} for second order elliptic equations with Neumann boundary conditions. We establish the first nonasymptotic convergence rate in $H^1$ norm for DRM using deep networks with $mathrm{ReLU}^2$ activation functions. In addition to providing a theoretical justification of DRM, our study also shed light on how to set the hyper-parameter of depth and width to achieve the desired convergence rate in terms of number of training samples. Technically, we derive bounds on the approximation error of deep $mathrm{ReLU}^2$ network in $H^1$ norm and on the Rademacher complexity of the non-Lipschitz composition of gradient norm and $mathrm{ReLU}^2$ network, both of which are of independent interest.
We propose a new method to deal with the essential boundary conditions encountered in the deep learning-based numerical solvers for partial differential equations. The trial functions representing by deep neural networks are non-interpolatory, which makes the enforcement of the essential boundary conditions a nontrivial matter. Our method resorts to Nitsches variational formulation to deal with this difficulty, which is consistent, and does not require significant extra computational costs. We prove the error estimate in the energy norm and illustrate the method on several representative problems posed in at most 100 dimension.
In this paper, we focus on designing a well-conditioned Glarkin spectral methods for solving a two-sided fractional diffusion equations with drift, in which the fractional operators are defined neither in Riemann-Liouville nor Caputo sense, and its physical meaning is clear. Based on the image spaces of Riemann-Liouville fractional integral operators on $L_p([a,b])$ space discussed in our previous work, after a step by step deduction, three kinds of Galerkin spectral formulations are proposed, the final obtained corresponding scheme of which shows to be well-conditioned---the condition number of the stiff matrix can be reduced from $O(N^{2alpha})$ to $O(N^{alpha})$, where $N$ is the degree of the polynomials used in the approximation. Another point is that the obtained schemes can also be applied successfully to approximate fractional Laplacian with generalized homogeneous boundary conditions, whose fractional order $alphain(0,2)$, not only having to be limited to $alphain(1,2)$. Several numerical experiments demonstrate the effectiveness of the derived schemes. Besides, based on the numerical results, we can observe the behavior of mean first exit time, an interesting quantity that can provide us with a further understanding about the mechanism of abnormal diffusion.
A numerical scheme is presented for approximating fractional order Poisson problems in two and three dimensions. The scheme is based on reformulating the original problem posed over $Omega$ on the extruded domain $mathcal{C}=Omegatimes[0,infty)$ following Caffarelli and Silvestre (2007). The resulting degenerate elliptic integer order PDE is then approximated using a hybrid FEM-spectral scheme. Finite elements are used in the direction parallel to the problem domain $Omega$, and an appropriate spectral method is used in the extruded direction. The spectral part of the scheme requires that we approximate the true eigenvalues of the integer order Laplacian over $Omega$. We derive an a priori error estimate which takes account of the error arising from using an approximation in place of the true eigenvalues. We further present a strategy for choosing approximations of the eigenvalues based on Weyls law and finite element discretizations of the eigenvalue problem. The system of linear algebraic equations arising from the hybrid FEM-spectral scheme is decomposed into blocks which can be solved effectively using standard iterative solvers such as multigrid and conjugate gradient. Numerical examples in two and three dimensions show that the approach is quasi-optimal in terms of complexity.