Do you want to publish a course? Click here

Fast Fourier-like Mapped Chebyshev Spectral-Galerkin Methods for PDEs with Integral Fractional Laplacian in Unbounded Domains

71   0   0.0 ( 0 )
 Added by Changtao Sheng Phd
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a fast spectral-Galerkin method for solving PDEs involving integral fractional Laplacian in $mathbb{R}^d$, which is built upon two essential components: (i) the Dunford-Taylor formulation of the fractional Laplacian; and (ii) Fourier-like bi-orthogonal mapped Chebyshev functions (MCFs) as basis functions. As a result, the fractional Laplacian can be fully diagonalised, and the complexity of solving an elliptic fractional PDE is quasi-optimal, i.e., $O((Nlog_2N)^d)$ with $N$ being the number of modes in each spatial direction. Ample numerical tests for various decaying exact solutions show that the convergence of the fast solver perfectly matches the order of theoretical error estimates. With a suitable time-discretization, the fast solver can be directly applied to a large class of nonlinear fractional PDEs. As an example, we solve the fractional nonlinear Schr{o}dinger equation by using the fourth-order time-splitting method together with the proposed MCF-spectral-Galerkin method.



rate research

Read More

In this paper, we introduce two new families of generalised Hermite polynomials/functions (GHPs/GHFs) in arbitrary dimensions, and develop efficient and accurate generalised Hermite spectral algorithms for PDEs with integral fractional Laplacian (IFL) and/or Schr{o}dinger operators in $mathbb R^d.$ As a generalisation of the G. Szeg{o}s family in 1D (1939), the first family of GHPs (resp. GHFs) are orthogonal with respect to $|bx|^{2mu} e^{-|bx|^2}$ (resp. $|bx |^{2mu}$) in $mathbb R^d$. We further define adjoint generalised Hermite functions (A-GHFs) which have an interwoven connection with the corresponding GHFs through the Fourier transform, and which are orthogonal with respect to the inner product $[u,v]_{H^s(mathbb R^d)}=((-Delta)^{s/ 2}u, (-Delta)^{s/2} v )_{mathbb R^d}$ associated with the IFL of order $s>0$. Thus, the spectral-Galerkin method using A-GHFs as basis functions leads to a diagonal stiffness matrix for the IFL (which is known to be notoriously difficult and expensive to discretise). The new basis also finds efficient and accurate in solving PDEs with the fractional Schr{o}dinger operator: $(-Delta)^s +|bs x|^{2mu}$ with $sin (0,1]$ and $mu>-1/2.$ Following the same spirit, we construct the second family of GHFs, dubbed as Muntz-type generalised Hermite functions (M-GHFs), which are orthogonal with respect to an inner product associated with the underlying Schr{o}dinger operator, and are tailored to the singularity of the solution at the origin. We demonstrate that the Muntz-type GHF spectral method leads to sparse matrices and spectrally accurate to some Schr{o}dinger eigenvalue problems.
92 - Daxin Nie , Weihua Deng 2021
In this paper, we provide a framework of designing the local discontinuous Galerkin scheme for integral fractional Laplacian $(-Delta)^{s}$ with $sin(0,1)$ in two dimensions. We theoretically prove and numerically verify the numerical stability and convergence of the scheme with the convergence rate no worse than $mathcal{O}(h^{k+frac{1}{2}})$.
When using Laguerre and Hermite spectral methods to numerically solve PDEs in unbounded domains, the number of collocation points assigned inside the region of interest is often insufficient, particularly when the region is expanded or translated to safely capture the unknown solution. Simply increasing the number of collocation points cannot ensure a fast convergence to spectral accuracy. In this paper, we propose a scaling technique and a moving technique to adaptively cluster enough collocation points in a region of interest in order to achieve a fast spectral convergence. Our scaling algorithm employs an indicator in the frequency domain that is used to determine when scaling is needed and informs the tuning of a scaling factor to redistribute collocation points to adapt to the diffusive behavior of the solution. Our moving technique adopts an exterior-error indicator and moves the collocation points to capture the translation. Both frequency and exterior-error indicators are defined using only the numerical solutions. We apply our methods to a number of different models, including diffusive and moving Fermi-Dirac distributions and nonlinear Dirac solitary waves, and demonstrate recovery of spectral convergence for time-dependent simulations. Performance comparison in solving a linear parabolic problem shows that our frequency scaling algorithm outperforms the existing scaling approaches. We also show our frequency scaling technique is able to track the blowup of average cell sizes in a model for cell proliferation.
137 - Lijing Zhao , Xudong Wang 2019
In this paper, we focus on designing a well-conditioned Glarkin spectral methods for solving a two-sided fractional diffusion equations with drift, in which the fractional operators are defined neither in Riemann-Liouville nor Caputo sense, and its physical meaning is clear. Based on the image spaces of Riemann-Liouville fractional integral operators on $L_p([a,b])$ space discussed in our previous work, after a step by step deduction, three kinds of Galerkin spectral formulations are proposed, the final obtained corresponding scheme of which shows to be well-conditioned---the condition number of the stiff matrix can be reduced from $O(N^{2alpha})$ to $O(N^{alpha})$, where $N$ is the degree of the polynomials used in the approximation. Another point is that the obtained schemes can also be applied successfully to approximate fractional Laplacian with generalized homogeneous boundary conditions, whose fractional order $alphain(0,2)$, not only having to be limited to $alphain(1,2)$. Several numerical experiments demonstrate the effectiveness of the derived schemes. Besides, based on the numerical results, we can observe the behavior of mean first exit time, an interesting quantity that can provide us with a further understanding about the mechanism of abnormal diffusion.
In this paper we introduce a new approach to compute rigorously solutions of Cauchy problems for a class of semi-linear parabolic partial differential equations. Expanding solutions with Chebyshev series in time and Fourier series in space, we introduce a zero finding problem $F(a)=0$ on a Banach algebra $X$ of Fourier-Chebyshev sequences, whose solution solves the Cauchy problem. The challenge lies in the fact that the linear part $mathcal{L} := DF(0)$ has an infinite block diagonal structure with blocks becoming less and less diagonal dominant at infinity. We introduce analytic estimates to show that $mathcal{L}$ is a boundedly invertible linear operator on $X$, and we obtain explicit, rigorous and computable bounds for the operator norm $| mathcal{L}^{-1}|_{B(X)}$. These bounds are then used to verify the hypotheses of a Newton-Kantorovich type argument which shows that the (Newton-like) operator $mathcal{T}(a) := a - mathcal{L}^{-1} F(a)$ is a contraction on a small ball centered at a numerical approximation of the Cauchy problem. The contraction mapping theorem yields a fixed point which corresponds to a classical (strong) solution of the Cauchy problem. The approach is simple to implement, numerically stable and is applicable to a class of PDE models, which include for instance Fishers equation, the Kuramoto-Sivashinsky equation, the Swift-Hohenberg equation and the phase-field crystal (PFC) equation. We apply our approach to each of these models and report plausible experimental results, which motivate further research on the method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا