Do you want to publish a course? Click here

Video Relation Detection with Trajectory-aware Multi-modal Features

64   0   0.0 ( 0 )
 Added by Wentao Xie
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Video relation detection problem refers to the detection of the relationship between different objects in videos, such as spatial relationship and action relationship. In this paper, we present video relation detection with trajectory-aware multi-modal features to solve this task. Considering the complexity of doing visual relation detection in videos, we decompose this task into three sub-tasks: object detection, trajectory proposal and relation prediction. We use the state-of-the-art object detection method to ensure the accuracy of object trajectory detection and multi-modal feature representation to help the prediction of relation between objects. Our method won the first place on the video relation detection task of Video Relation Understanding Grand Challenge in ACM Multimedia 2020 with 11.74% mAP, which surpasses other methods by a large margin.

rate research

Read More

Learning transferable and domain adaptive feature representations from videos is important for video-relevant tasks such as action recognition. Existing video domain adaptation methods mainly rely on adversarial feature alignment, which has been derived from the RGB image space. However, video data is usually associated with multi-modal information, e.g., RGB and optical flow, and thus it remains a challenge to design a better method that considers the cross-modal inputs under the cross-domain adaptation setting. To this end, we propose a unified framework for video domain adaptation, which simultaneously regularizes cross-modal and cross-domain feature representations. Specifically, we treat each modality in a domain as a view and leverage the contrastive learning technique with properly designed sampling strategies. As a result, our objectives regularize feature spaces, which originally lack the connection across modalities or have less alignment across domains. We conduct experiments on domain adaptive action recognition benchmark datasets, i.e., UCF, HMDB, and EPIC-Kitchens, and demonstrate the effectiveness of our components against state-of-the-art algorithms.
150 - Wentian Zhao , Yao Hu , Heda Wang 2021
Entity-aware image captioning aims to describe named entities and events related to the image by utilizing the background knowledge in the associated article. This task remains challenging as it is difficult to learn the association between named entities and visual cues due to the long-tail distribution of named entities. Furthermore, the complexity of the article brings difficulty in extracting fine-grained relationships between entities to generate informative event descriptions about the image. To tackle these challenges, we propose a novel approach that constructs a multi-modal knowledge graph to associate the visual objects with named entities and capture the relationship between entities simultaneously with the help of external knowledge collected from the web. Specifically, we build a text sub-graph by extracting named entities and their relationships from the article, and build an image sub-graph by detecting the objects in the image. To connect these two sub-graphs, we propose a cross-modal entity matching module trained using a knowledge base that contains Wikipedia entries and the corresponding images. Finally, the multi-modal knowledge graph is integrated into the captioning model via a graph attention mechanism. Extensive experiments on both GoodNews and NYTimes800k datasets demonstrate the effectiveness of our method.
Sign language is commonly used by deaf or speech impaired people to communicate but requires significant effort to master. Sign Language Recognition (SLR) aims to bridge the gap between sign language users and others by recognizing signs from given videos. It is an essential yet challenging task since sign language is performed with the fast and complex movement of hand gestures, body posture, and even facial expressions. Recently, skeleton-based action recognition attracts increasing attention due to the independence between the subject and background variation. However, skeleton-based SLR is still under exploration due to the lack of annotations on hand keypoints. Some efforts have been made to use hand detectors with pose estimators to extract hand key points and learn to recognize sign language via Neural Networks, but none of them outperforms RGB-based methods. To this end, we propose a novel Skeleton Aware Multi-modal SLR framework (SAM-SLR) to take advantage of multi-modal information towards a higher recognition rate. Specifically, we propose a Sign Language Graph Convolution Network (SL-GCN) to model the embedded dynamics and a novel Separable Spatial-Temporal Convolution Network (SSTCN) to exploit skeleton features. RGB and depth modalities are also incorporated and assembled into our framework to provide global information that is complementary to the skeleton-based methods SL-GCN and SSTCN. As a result, SAM-SLR achieves the highest performance in both RGB (98.42%) and RGB-D (98.53%) tracks in 2021 Looking at People Large Scale Signer Independent Isolated SLR Challenge. Our code is available at https://github.com/jackyjsy/CVPR21Chal-SLR
This paper considers the problem of multi-modal future trajectory forecast with ranking. Here, multi-modality and ranking refer to the multiple plausible path predictions and the confidence in those predictions, respectively. We propose Social-STAGE, Social interaction-aware Spatio-Temporal multi-Attention Graph convolution network with novel Evaluation for multi-modality. Our main contributions include analysis and formulation of multi-modality with ranking using interaction and multi-attention, and introduction of new metrics to evaluate the diversity and associated confidence of multi-modal predictions. We evaluate our approach on existing public datasets ETH and UCY and show that the proposed algorithm outperforms the state of the arts on these datasets.
Effective detection of fake news has recently attracted significant attention. Current studies have made significant contributions to predicting fake news with less focus on exploiting the relationship (similarity) between the textual and visual information in news articles. Attaching importance to such similarity helps identify fake news stories that, for example, attempt to use irrelevant images to attract readers attention. In this work, we propose a $mathsf{S}$imilarity-$mathsf{A}$ware $mathsf{F}$ak$mathsf{E}$ news detection method ($mathsf{SAFE}$) which investigates multi-modal (textual and visual) information of news articles. First, neural networks are adopted to separately extract textual and visual features for news representation. We further investigate the relationship between the extracted features across modalities. Such representations of news textual and visual information along with their relationship are jointly learned and used to predict fake news. The proposed method facilitates recognizing the falsity of news articles based on their text, images, or their mismatches. We conduct extensive experiments on large-scale real-world data, which demonstrate the effectiveness of the proposed method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا