No Arabic abstract
This paper considers the problem of multi-modal future trajectory forecast with ranking. Here, multi-modality and ranking refer to the multiple plausible path predictions and the confidence in those predictions, respectively. We propose Social-STAGE, Social interaction-aware Spatio-Temporal multi-Attention Graph convolution network with novel Evaluation for multi-modality. Our main contributions include analysis and formulation of multi-modality with ranking using interaction and multi-attention, and introduction of new metrics to evaluate the diversity and associated confidence of multi-modal predictions. We evaluate our approach on existing public datasets ETH and UCY and show that the proposed algorithm outperforms the state of the arts on these datasets.
Forecasting long-term human motion is a challenging task due to the non-linearity, multi-modality and inherent uncertainty in future trajectories. The underlying scene and past motion of agents can provide useful cues to predict their future motion. However, the heterogeneity of the two inputs poses a challenge for learning a joint representation of the scene and past trajectories. To address this challenge, we propose a model based on grid representations to forecast agent trajectories. We represent the past trajectories of agents using binary 2-D grids, and the underlying scene as a RGB birds-eye view (BEV) image, with an agent-centric frame of reference. We encode the scene and past trajectories using convolutional layers and generate trajectory forecasts using a Convolutional LSTM (ConvLSTM) decoder. Results on the publicly available Stanford Drone Dataset (SDD) show that our model outperforms prior approaches and outputs realistic future trajectories that comply with scene structure and past motion.
Pedestrian trajectory prediction in urban scenarios is essential for automated driving. This task is challenging because the behavior of pedestrians is influenced by both their own history paths and the interactions with others. Previous research modeled these interactions with pooling mechanisms or aggregating with hand-crafted attention weights. In this paper, we present the Social Interaction-Weighted Spatio-Temporal Convolutional Neural Network (Social-IWSTCNN), which includes both the spatial and the temporal features. We propose a novel design, namely the Social Interaction Extractor, to learn the spatial and social interaction features of pedestrians. Most previous works used ETH and UCY datasets which include five scenes but do not cover urban traffic scenarios extensively for training and evaluation. In this paper, we use the recently released large-scale Waymo Open Dataset in urban traffic scenarios, which includes 374 urban training scenes and 76 urban testing scenes to analyze the performance of our proposed algorithm in comparison to the state-of-the-art (SOTA) models. The results show that our algorithm outperforms SOTA algorithms such as Social-LSTM, Social-GAN, and Social-STGCNN on both Average Displacement Error (ADE) and Final Displacement Error (FDE). Furthermore, our Social-IWSTCNN is 54.8 times faster in data pre-processing speed, and 4.7 times faster in total test speed than the current best SOTA algorithm Social-STGCNN.
Better machine understanding of pedestrian behaviors enables faster progress in modeling interactions between agents such as autonomous vehicles and humans. Pedestrian trajectories are not only influenced by the pedestrian itself but also by interaction with surrounding objects. Previous methods modeled these interactions by using a variety of aggregation methods that integrate different learned pedestrians states. We propose the Social Spatio-Temporal Graph Convolutional Neural Network (Social-STGCNN), which substitutes the need of aggregation methods by modeling the interactions as a graph. Our results show an improvement over the state of art by 20% on the Final Displacement Error (FDE) and an improvement on the Average Displacement Error (ADE) with 8.5 times less parameters and up to 48 times faster inference speed than previously reported methods. In addition, our model is data efficient, and exceeds previous state of the art on the ADE metric with only 20% of the training data. We propose a kernel function to embed the social interactions between pedestrians within the adjacency matrix. Through qualitative analysis, we show that our model inherited social behaviors that can be expected between pedestrians trajectories. Code is available at https://github.com/abduallahmohamed/Social-STGCNN.
The availability of large-scale video action understanding datasets has facilitated advances in the interpretation of visual scenes containing people. However, learning to recognize human activities in an unconstrained real-world environment, with potentially highly unbalanced and long-tailed distributed data remains a significant challenge, not least owing to the lack of a reflective large-scale dataset. Most existing large-scale datasets are either collected from a specific or constrained environment, e.g. kitchens or rooms, or video sharing platforms such as YouTube. In this paper, we introduce JRDB-Act, a multi-modal dataset, as an extension of the existing JRDB, which is captured by asocial mobile manipulator and reflects a real distribution of human daily life actions in a university campus environment. JRDB-Act has been densely annotated with atomic actions, comprises over 2.8M action labels, constituting a large-scale spatio-temporal action detection dataset. Each human bounding box is labelled with one pose-based action label and multiple (optional) interaction-based action labels. Moreover JRDB-Act comes with social group identification annotations conducive to the task of grouping individuals based on their interactions in the scene to infer their social activities (common activities in each social group).
Predicting the future paths of an agents neighbors accurately and in a timely manner is central to the autonomous applications for collision avoidance. Conventional approaches, e.g., LSTM-based models, take considerable computational costs in the prediction, especially for the long sequence prediction. To support more efficient and accurate trajectory predictions, we propose a novel CNN-based spatial-temporal graph framework GraphTCN, which models the spatial interactions as social graphs and captures the spatio-temporal interactions with a modified temporal convolutional network. In contrast to conventional models, both the spatial and temporal modeling of our model are computed within each local time window. Therefore, it can be executed in parallel for much higher efficiency, and meanwhile with accuracy comparable to best-performing approaches. Experimental results confirm that our model achieves better performance in terms of both efficiency and accuracy as compared with state-of-the-art models on various trajectory prediction benchmark datasets.