Do you want to publish a course? Click here

Boosting Entity-aware Image Captioning with Multi-modal Knowledge Graph

151   0   0.0 ( 0 )
 Added by Wentian Zhao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Entity-aware image captioning aims to describe named entities and events related to the image by utilizing the background knowledge in the associated article. This task remains challenging as it is difficult to learn the association between named entities and visual cues due to the long-tail distribution of named entities. Furthermore, the complexity of the article brings difficulty in extracting fine-grained relationships between entities to generate informative event descriptions about the image. To tackle these challenges, we propose a novel approach that constructs a multi-modal knowledge graph to associate the visual objects with named entities and capture the relationship between entities simultaneously with the help of external knowledge collected from the web. Specifically, we build a text sub-graph by extracting named entities and their relationships from the article, and build an image sub-graph by detecting the objects in the image. To connect these two sub-graphs, we propose a cross-modal entity matching module trained using a knowledge base that contains Wikipedia entries and the corresponding images. Finally, the multi-modal knowledge graph is integrated into the captioning model via a graph attention mechanism. Extensive experiments on both GoodNews and NYTimes800k datasets demonstrate the effectiveness of our method.



rate research

Read More

182 - Anwen Hu , Shizhe Chen , Qin Jin 2021
Most current image captioning systems focus on describing general image content, and lack background knowledge to deeply understand the image, such as exact named entities or concrete events. In this work, we focus on the entity-aware news image captioning task which aims to generate informative captions by leveraging the associated news articles to provide background knowledge about the target image. However, due to the length of news articles, previous works only employ news articles at the coarse article or sentence level, which are not fine-grained enough to refine relevant events and choose named entities accurately. To overcome these limitations, we propose an Information Concentrated Entity-aware news image CAPtioning (ICECAP) model, which progressively concentrates on relevant textual information within the corresponding news article from the sentence level to the word level. Our model first creates coarse concentration on relevant sentences using a cross-modality retrieval model and then generates captions by further concentrating on relevant words within the sentences. Extensive experiments on both BreakingNews and GoodNews datasets demonstrate the effectiveness of our proposed method, which outperforms other state-of-the-arts. The code of ICECAP is publicly available at https://github.com/HAWLYQ/ICECAP.
Automatically generating a human-like description for a given image is a potential research in artificial intelligence, which has attracted a great of attention recently. Most of the existing attention methods explore the mapping relationships between words in sentence and regions in image, such unpredictable matching manner sometimes causes inharmonious alignments that may reduce the quality of generated captions. In this paper, we make our efforts to reason about more accurate and meaningful captions. We first propose word attention to improve the correctness of visual attention when generating sequential descriptions word-by-word. The special word attention emphasizes on word importance when focusing on different regions of the input image, and makes full use of the internal annotation knowledge to assist the calculation of visual attention. Then, in order to reveal those incomprehensible intentions that cannot be expressed straightforwardly by machines, we introduce a new strategy to inject external knowledge extracted from knowledge graph into the encoder-decoder framework to facilitate meaningful captioning. Finally, we validate our model on two freely available captioning benchmarks: Microsoft COCO dataset and Flickr30k dataset. The results demonstrate that our approach achieves state-of-the-art performance and outperforms many of the existing approaches.
Medical image captioning automatically generates a medical description to describe the content of a given medical image. A traditional medical image captioning model creates a medical description only based on a single medical image input. Hence, an abstract medical description or concept is hard to be generated based on the traditional approach. Such a method limits the effectiveness of medical image captioning. Multi-modal medical image captioning is one of the approaches utilized to address this problem. In multi-modal medical image captioning, textual input, e.g., expert-defined keywords, is considered as one of the main drivers of medical description generation. Thus, encoding the textual input and the medical image effectively are both important for the task of multi-modal medical image captioning. In this work, a new end-to-end deep multi-modal medical image captioning model is proposed. Contextualized keyword representations, textual feature reinforcement, and masked self-attention are used to develop the proposed approach. Based on the evaluation of the existing multi-modal medical image captioning dataset, experimental results show that the proposed model is effective with the increase of +53.2% in BLEU-avg and +18.6% in CIDEr, compared with the state-of-the-art method.
Image captioning is a challenging computer vision task, which aims to generate a natural language description of an image. Most recent researches follow the encoder-decoder framework which depends heavily on the previous generated words for the current prediction. Such methods can not effectively take advantage of the future predicted information to learn complete semantics. In this paper, we propose Context-Aware Auxiliary Guidance (CAAG) mechanism that can guide the captioning model to perceive global contexts. Upon the captioning model, CAAG performs semantic attention that selectively concentrates on useful information of the global predictions to reproduce the current generation. To validate the adaptability of the method, we apply CAAG to three popular captioners and our proposal achieves competitive performance on the challenging Microsoft COCO image captioning benchmark, e.g. 132.2 CIDEr-D score on Karpathy split and 130.7 CIDEr-D (c40) score on official online evaluation server.
Video captioning targets interpreting the complex visual contents as text descriptions, which requires the model to fully understand video scenes including objects and their interactions. Prevailing methods adopt off-the-shelf object detection networks to give object proposals and use the attention mechanism to model the relations between objects. They often miss some undefined semantic concepts of the pretrained model and fail to identify exact predicate relationships between objects. In this paper, we investigate an open research task of generating text descriptions for the given videos, and propose Cross-Modal Graph (CMG) with meta concepts for video captioning. Specifically, to cover the useful semantic concepts in video captions, we weakly learn the corresponding visual regions for text descriptions, where the associated visual regions and textual words are named cross-modal meta concepts. We further build meta concept graphs dynamically with the learned cross-modal meta concepts. We also construct holistic video-level and local frame-level video graphs with the predicted predicates to model video sequence structures. We validate the efficacy of our proposed techniques with extensive experiments and achieve state-of-the-art results on two public datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا