Do you want to publish a course? Click here

Coulomb Blockade Thermometry on a Wide Temperature Range

68   0   0.0 ( 0 )
 Added by Antti Manninen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Coulomb Blockade Thermometer (CBT) is a primary thermometer for cryogenic temperatures, with demonstrated operation from below 1 mK up to 60 K. Its performance as a primary thermometer has been verified at temperatures from 20 mK to 200 mK at uncertainty level below 1 % (k = 2). In a new project, our aim is to extend the metrologically verified temperature range of the primary CBT up to 25 K. We also demonstrate close-to-ideal operation of a CBT with only two tunnel junctions when the device is embedded in a low-impedance environment.



rate research

Read More

We present results of a Au-Ge alloy that is useful as a resistance-based thermometer from room temperature down to at least SI{0.2}{kelvin}. Over a wide range, the electrical resistivity of the alloy shows a logarithmic temperature dependence, which simultaneously retains the sensitivity required for practical thermometry while also maintaining a relatively modest and easily-measurable value of resistivity. We characterize the sensitivity of the alloy as a possible thermometer and show that it compares favorably to commercially-available temperature sensors. We experimentally identify that the characteristic logarithmic temperature dependence of the alloy stems from Kondo-like behavior induced by the specific heat treatment it undergoes.
The charge localization of single electrons on mesoscopic metallic islands leads to a suppression of the electrical current, known as the Coulomb blockade. When this correction is small, it enables primary electron thermometry, as it was first demonstrated by Pekola et al. (Phys. Rev. Letters, 73, 2903 [1994]). However, in the low temperature limit, random charge offsets influence the conductance and limit the universal behavior of a single metallic island. In this work, we numerically investigate the conductance of a junction array, and demonstrate the extension of the primary regime for large arrays, even when the variations in the device parameters are taken into account. We find that our simulations agree well with measured conductance traces in the submillikelvin electron temperature regime.
We investigate Coulomb blockade thermometers (CBT) in an intermediate temperature regime, where measurements with enhanced accuracy are possible due to the increased magnitude of the differential conductance dip. Previous theoretical results show that corrections to the half width and to the depth of the measured conductance dip of a sensor are needed, when leaving the regime of weak Coulomb blockade towards lower temperatures. In the present work, we demonstrate experimentally that the temperature range of a CBT sensor can be extended by employing these corrections without compromising the primary nature or the accuracy of the thermometer.
We demonstrate experimentally a precise realization of Coulomb Blockade Thermometry (CBT) working at temperatures up to 60 K. Advances in nano fabrication methods using electron beam lithography allow us to fabricate a uniform arrays of sufficiently small tunnel junctions to guarantee an overall temperature reading uncertainty of about 1%
78 - H. Duprez , F. Pierre , E. Sivre 2021
We observe and comprehend the dynamical Coulomb blockade suppression of the electrical conductance across an electronic quantum channel submitted to a temperature difference. A broadly tunable, spin-polarized Ga(Al)As quantum channel is connected on-chip, through a micron-scale metallic node, to a linear $RC$ circuit. The latter is made up of the nodes geometrical capacitance $C$ in parallel with an adjustable resistance $Rin {1/2,1/3,1/4}times h/e^2$ formed by 2--4 quantum Hall channels. The system is characterized by three temperatures: a temperature of the electrons in the large electrodes ($T$) and in the node ($T_mathrm{node}$), and a temperature of the electromagnetic modes of the $RC$ circuit ($T_mathrm{env}$). The temperature in the node is selectively increased by local Joule dissipation, and characterized from current fluctuations. For a quantum channel in the tunnel regime, a close match is found between conductance measurements and tunnel dynamical Coulomb blockade theory. In the opposite near ballistic regime, we develop a theory that accounts for different electronic and electromagnetic bath temperatures, again in very good agreement with experimental data. Beyond these regimes, for an arbitrary quantum channel set in the far out-of-equilibrium situation where the temperature in the node significantly exceeds the one in the large electrodes, the equilibrium (uniform temperature) prediction for the conductance is recovered, albeit at a rescaled temperature $alpha T_mathrm{node}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا