Do you want to publish a course? Click here

Origin of Galactic Spurs: New Insight from Radio/X-ray All-sky Maps

97   0   0.0 ( 0 )
 Added by Jun Kataoka Prof.
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this study, we analyze giant Galactic spurs seen in both radio and X-ray all-sky maps to reveal their origins. We discuss two types of giant spurs: one is the brightest diffuse emission near the maps center, which is likely to be related to Fermi bubbles (NPSs/SPSs, north/south polar spurs, respectively), and the other is weaker spurs that coincide positionally with local spiral arms in our Galaxy (LAS, local arm spur). Our analysis finds that the X-ray emissions, not only from the NPS but from the SPS are closer to the Galactic center by ~5 deg compared with the corresponding radio emission. Furthermore, larger offsets of 10-20 deg are observed in the LASs; however, they are attributed to different physical origins. Moreover, the temperature of the X-ray emission is kT ~ 0.2 keV for the LAS, which is systematically lower than those of the NPS and SPS (kT ~ 0.3 keV) but consistent with the typical temperature of Galactic halo gas. We argue that the radio/X-ray offset and the slightly higher temperature of the NPS/SPS X-ray gas are due to the shock compression/heating of halo gas during a significant Galactic explosion in the past, whereas the enhanced X-ray emission from the LAS may be due to the weak condensation of halo gas in the arm potential or star formation activity without shock heating.



rate research

Read More

Some indications for tension have long been identified between cosmological constraints obtained from galaxy clusters and primary CMB measurements. Typically, assuming the matter density and fluctuations, as parameterized with Omega_m and sigma_8, estimated from CMB measurements, many more clusters are expected than those actually observed. One possible explanation could be that certain types of galaxy groups or clusters were missed in samples constructed in previous surveys, resulting in a higher incompleteness than estimated. We aim to determine if a hypothetical class of very extended, low surface brightness, galaxy groups or clusters have been missed in previous X-ray cluster surveys based on the ROSAT All-Sky Survey (RASS). We applied a dedicated source detection algorithm sensitive also to more unusual group or cluster surface brightness distributions. We found many known but also a number of new group candidates, which are not included in any previous X-ray / SZ cluster catalogs. In this paper, we present a pilot sample of 13 very extended groups discovered in the RASS at positions where no X-ray source has been detected previously and with clear optical counterparts. The X-ray fluxes of at least 5 of these are above the nominal flux-limits of previous RASS cluster catalogs. They have low mass ($10^{13} - 10^{14} M_{odot}$; i.e., galaxy groups), are at low redshift (z<0.08), and exhibit flatter surface brightness distributions than usual. We demonstrate that galaxy groups were missed in previous RASS surveys, possibly due to the flat surface brightness distributions of this potential new population. Analysis of the full sample will show if this might have a significant effect on previous cosmological parameter constraints based on RASS cluster surveys. (This is a shortened version of the abstract - full text in the article)
We outline scientific objectives for monitoring X-ray sources and transients with wide-angle, coded mask cameras. It is now possible to instantaneously view half of the sky over long time intervals, gaining access to events of extraordinary interest. Solid state detectors can raise the quality of data products for bright sources to levels associated with pointed instruments. There are diverse ways to advance high energy astrophysics and quantitative applications for general relativity.
With the advent of more sensitive all-sky instruments, the transient Universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments aboard the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), Monitor of All-Sky X-ray Image (MAXI), Rossi X-ray Timing Explorer (RXTE), and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction ($sim$ 40%) of the Galactic transient BHXB outburst sample over the past $sim20$ years. Our findings suggest that this hard-only behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these hard-only outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.
Wide-field H-alpha images of the Galactic plane have revealed a new supernova remnant (SNR) nearly three degrees in diameter centred at l = 107.0, b = +9.0. Deep and higher resolution H-alpha and [O III] 5007 Ang images show dozens of H-alpha filaments along the remnants northern, western, and southwestern limbs, but few [O III] bright filaments. The nebula is well detected in the H-alpha Virginia Tech Spectral-Line Survey images, with many of its brighter filaments even visible on Digital Sky Survey images. Low-dispersion spectra of several filaments show either Balmer dominated, non-radiative filaments or the more common SNR radiative filaments with [S II]/H-alpha ratios above 0.5, consistent with shock-heated line emission. Emission line ratios suggest shock velocities ranging from <70 km/s along its western limb to ~100 km/s along its northwestern boundary. While no associated X-ray emission is seen in ROSAT images, faint 1420 MHz radio emission appears coincident with its western and northern limbs. Based on an analysis of the remnants spatially resolved H-alpha and [O III] emissions, we estimate the remnants distance around 1.5 - 2.0 kpc implying a physically large (dia.= 75 - 100 pc) and old (90 - 110 x 10^3 yr) SNR in its post-Sedov radiative phase of evolution expanding into a low density interstellar medium (n = 0.05 - 0.2 cm^-3) and lying some 250 - 300 pc above the Galactic plane.
The origin and evolution of supernova remnants of the mixed-morphology class is not well understood. Several remnants present distorted radio or X-ray shells with jet-like structures. G290.1-0.8 (MSH 11-61A) belongs to this class. We aim to investigate the nature of this supernova remnant in order to unveil the origin of its particular morphology. We based our work on the study of the X-ray emitting plasma properties and the conditions imposed by the cold interstellar medium where the remnant expanded. We use archival radio, HI line data and X-ray observations from XMM-Newton and Chandra observatories, to study G290.1-0.8 and its surrounding medium. Spatially resolved spectral analysis and mean photon energy maps are used to obtain physical and geometrical parameters of the source. Radio continuum and HI line maps give crucial information to understand the radio/X-ray morphology. The X-ray images show that the remnant presents two opposite symmetric bright spots on a symmetry axis running towards the NW-SE direction. Spectral analysis and mean photon energy maps confirm that the physical conditions of the emitting plasma are not homogeneous throughout the remnant. In fact, both bright spots have higher temperatures than the rest of the plasma and its constituents have not reached ionization equilibrium yet. HI line data reveal low density tube-like structures aligned along the same direction. This evidence supports the idea that the particular X-ray morphology observed is a direct consequence of the structure of the interstellar medium where the remnant evolved. However, the possibility that an undetected point-like object, as a neutron star, exists within the remnant and contributes to the X-ray emission cannot be discarded. Finally, we suggest that a supernova explosion due to the collapse of a high-mass star with a strong bipolar wind can explain the supernova remnant morphology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا