No Arabic abstract
Some indications for tension have long been identified between cosmological constraints obtained from galaxy clusters and primary CMB measurements. Typically, assuming the matter density and fluctuations, as parameterized with Omega_m and sigma_8, estimated from CMB measurements, many more clusters are expected than those actually observed. One possible explanation could be that certain types of galaxy groups or clusters were missed in samples constructed in previous surveys, resulting in a higher incompleteness than estimated. We aim to determine if a hypothetical class of very extended, low surface brightness, galaxy groups or clusters have been missed in previous X-ray cluster surveys based on the ROSAT All-Sky Survey (RASS). We applied a dedicated source detection algorithm sensitive also to more unusual group or cluster surface brightness distributions. We found many known but also a number of new group candidates, which are not included in any previous X-ray / SZ cluster catalogs. In this paper, we present a pilot sample of 13 very extended groups discovered in the RASS at positions where no X-ray source has been detected previously and with clear optical counterparts. The X-ray fluxes of at least 5 of these are above the nominal flux-limits of previous RASS cluster catalogs. They have low mass ($10^{13} - 10^{14} M_{odot}$; i.e., galaxy groups), are at low redshift (z<0.08), and exhibit flatter surface brightness distributions than usual. We demonstrate that galaxy groups were missed in previous RASS surveys, possibly due to the flat surface brightness distributions of this potential new population. Analysis of the full sample will show if this might have a significant effect on previous cosmological parameter constraints based on RASS cluster surveys. (This is a shortened version of the abstract - full text in the article)
The ROSAT All-Sky Survey (RASS) was the first imaging X-ray survey of the entire sky. While X-ray source counterparts are known to range from distant quasars to nearby M dwarfs, the RASS data alone are often insufficient to determine the nature of an X-ray source. As a result, large-scale follow-up programs are required to construct samples of known X-ray emitters. We use optical data produced by the Sloan Digital Sky Survey (SDSS) to identify 709 stellar X-ray emitters cataloged in the RASS and falling within the SDSS Data Release 1 footprint. Most of these are bright stars with coronal X-ray emission unsuitable for SDSS spectroscopy, which is designed for fainter objects (g > 15 mag). Instead, we use SDSS photometry, correlations with the Two Micron All Sky Survey and other catalogs, and spectroscopy from the Apache Point Observatory 3.5 m telescope to identify these stellar X-ray counterparts. Our sample of 707 X-ray-emitting F, G, K, and M stars is one of the largest X-ray-selected samples of such stars. We derive distances to these stars using photometric parallax relations appropriate for dwarfs on the main sequence, and use these distances to calculate LX. We also identify a previously unknown cataclysmic variable (CV) as a RASS counterpart. Separately, we use correlations of the RASS and the SDSS spectroscopic catalogs of CVs and white dwarfs (WDs) to study the properties of these rarer X-ray-emitting stars. We examine the relationship between (fX/fg) and the equivalent width of the Hbeta emission line for 46 X-ray-emitting CVs and discuss tentative classifications for a subset based on these quantities. We identify 17 new X-ray-emitting DA (hydrogen) WDs, of which three are newly identified WDs. (abridged)
In the construction of an X-ray selected sample of galaxy clusters for cosmological studies, we have assembled a sample of 495 X-ray sources found to show extended X-ray emission in the first processing of the ROSAT All-Sky Survey. The sample covers the celestial region with declination $delta ge 0deg $ and galactic latitude $|b_{II}| ge 20deg $ and comprises sources with a count rate $ge 0.06$ counts s$^{-1}$ and a source extent likelihood of 7. In an optical follow-up identification program we find 378 (76%) of these sources to be clusters of galaxies. ...
We present a catalogue of 3405 X-ray sources from the ROSAT All Sky Survey (RASS) Bright Source Catalogue which fall within the area covered by the 6dF Galaxy Survey (6dFGS). The catalogue is count-rate limited at 0.05 ctss in the X-ray and covers the area of sky with delta < 0 deg and |b|>10 deg. The RASS--6dFGS sample was one of the additional target catalogues of the 6dFGS and as a result we obtained optical spectra for 2224 (65%) RASS sources. Of these, 1715 (77%) have reliable redshifts with a median redshift of z=0.16 (excluding the Galactic sources). For the optically bright sources (b_J < 17.5) in the observed sample, over 90% have reliable redshifts. The catalogue mainly comprises QSOs and active galaxies but also includes 238 Galactic sources. Of the sources with reliable redshifts the majority are Type 1 AGN (69%), while 12% are Type 2 AGN, 6% absorption-line galaxies and 13% are stars. We also identify a small number of optically-faint, very low redshift, compact objects which fall outside the general trend in the b_J-z plane. We detect 918 sources (27%) of the RASS--6dFGS sample in the radio using either the 1.4 GHz NRAO VLA Sky Survey (NVSS) or the 843 MHz Sydney University Molonglo Sky Survey (SUMSS) catalogues and find that the detection rate changes with redshift. At redshifts larger than 1 virtually all of these sources have radio counterparts and with a median flux density of 1.15 Jy, they are much stronger than the median flux density of 28.6 mJy for the full sample. We attribute this to the fact that the X-ray flux of these objects is being boosted by a jet component, possibly Doppler boosted, that is only present in radio-loud AGN. (abridged version)
Results of a systematic study of substructure in X-ray surface brightness distributions of a combined sample of 470 REFLEX+BCS clusters of galaxies are presented. The fully automized morphology analysis is based on data of the 3rd processing of the ROSAT All-Sky survey (RASS-3). After correction for several systematic effects, $52pm 7$ percent of the REFLEX+BCS clusters are found to be substructured in metric apertures of 1 Mpc radius ($H_0= 50 {rm km} {rm s}^{-1} {rm Mpc}^{-1}$). Future simulations will show statistically which mass spectrum of major and minor mergers contributes to this number. Another important result is the discovery of a substructure-density relation, analogous to the morphology-density relation for galaxies. Here, clusters with asymmetric or multi-modal X-ray surface brightness distributions are located preferentially in regions with higher cluster number densities. The substructure analyses techniques are used to compare the X-ray morphology of 53 clusters with radio halos and relics, and 22 cooling flow clusters with the REFLEX+BCS reference sample. After careful equalization of the different `sensitivities of the subsamples to substructure detection it is found that the halo and relic sample tends to show more often multi-modal and elongated X-ray surface brightness distributions compared to the REFLEX+BCS reference sample. The cooling flow clusters show more often circular symmetric and unimodal distributions compared to the REFLEX+BCS and the halo/relic reference samples. Both findings further support the idea that radio halos and relics are triggered by merger events, and that pre-existing cooling flows might be disrupted by recent major mergers.
We present the X-ray and optical properties of the galaxy groups selected in the Chandra X-Bootes survey. Our final sample comprises 32 systems at textbf{$z<1.75$}, with 14 below $z = 0.35$. For these 14 systems we estimate velocity dispersions ($sigma_{gr}$) and perform a virial analysis to obtain the radii ($R_{200}$ and $R_{500}$) and total masses ($M_{200}$ and $M_{500}$) for groups with at least five galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity ($L_X$). We examine the performance of the group properties $sigma_{gr}$, $L_{opt}$ and $L_X$, as proxies for the group mass. Understanding how well these observables measure the total mass is important to estimate how precisely the cluster/group mass function is determined. Exploring the scaling relations built with the X-Bootes sample and comparing these with samples from the literature, we find a break in the $L_X$-$M_{500}$ relation at approximately $M_{500} = 5times10^{13}$ M$_odot$ (for $M_{500} > 5times10^{13}$ M$_odot$, $M_{500} propto L_X^{0.61pm0.02}$, while for $M_{500} leq 5times10^{13}$ M$_odot$, $M_{500} propto L_X^{0.44pm0.05}$). Thus, the mass-luminosity relation for galaxy groups cannot be described by the same power law as galaxy clusters. A possible explanation for this break is the dynamical friction, tidal interactions and projection effects which reduce the velocity dispersion values of the galaxy groups. By extending the cluster luminosity function to the group regime, we predict the number of groups that new X-ray surveys, particularly eROSITA, will detect. Based on our cluster/group luminosity function estimates, eROSITA will identify $sim$1800 groups ($L_X = 10^{41}-10^{43}$ ergs s$^{-1}$) within a distance of 200 Mpc. Since groups lie in large scale filaments, this group sample will map the large scale structure of the local universe.