Do you want to publish a course? Click here

Tremor Waveform Denoising and Automatic Location with Neural Network Interpretation

52   0   0.0 ( 0 )
 Added by Claudia Hulbert
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Active faults release tectonic stress imposed by plate motion through a spectrum of slip modes, from slow, aseismic slip, to dynamic, seismic events. Slow earthquakes are often associated with tectonic tremor, non-impulsive signals that can easily be buried in seismic noise and go undetected. We present a new methodology aimed at improving the detection and location of tremors hidden within seismic noise. After identifying tremors with a classic convolutional neural network, we rely on neural network attribution to extract core tremor signatures and denoise input waveforms. We then use these cleaned waveforms to locate tremors with standard array-based techniques. We apply this method to the Cascadia subduction zone, where we identify tremor patches consistent with existing catalogs. In particular, we show that the cleaned signals resulting from the neural network attribution analysis correspond to a waveform traveling in the Earths crust and mantle at wavespeeds consistent with local estimates. This approach allows us to extract small signals hidden within the noise, and therefore to locate more tremors than in existing catalogs.



rate research

Read More

184 - Yu Zeng , Kebei Jiang , Jie Chen 2018
One of the most crucial tasks in seismic reflection imaging is to identify the salt bodies with high precision. Traditionally, this is accomplished by visually picking the salt/sediment boundaries, which requires a great amount of manual work and may introduce systematic bias. With recent progress of deep learning algorithm and growing computational power, a great deal of efforts have been made to replace human effort with machine power in salt body interpretation. Currently, the method of Convolutional neural networks (CNN) is revolutionizing the computer vision field and has been a hot topic in the image analysis. In this paper, the benefits of CNN-based classification are demonstrated by using a state-of-art network structure U-Net, along with the residual learning framework ResNet, to delineate salt body with high precision. Network adjustments, including the Exponential Linear Units (ELU) activation function, the Lov{a}sz-Softmax loss function, and stratified $K$-fold cross-validation, have been deployed to further improve the prediction accuracy. The preliminary result using SEG Advanced Modeling (SEAM) data shows good agreement between the predicted salt body and manually interpreted salt body, especially in areas with weak reflections. This indicates the great potential of applying CNN for salt-related interpretations.
We describe a novel framework for estimating subsurface properties, such as rock permeability and porosity, from time-lapse observed seismic data by coupling full-waveform inversion, subsurface flow processes, and rock physics models. For the inverse modeling, we handle the back-propagation of gradients by an intrusive automatic differentiation strategy that offers three levels of user control: (1) at the wave physics level, we adopted the discrete adjoint method in order to use our existing high-performance FWI code; (2) at the rock physics level, we used built-in operators from the $texttt{TensorFlow}$ backend; (3) at the flow physics level, we implemented customized PDE operators for the potential and nonlinear saturation equations. These three levels of gradient computation strike a good balance between computational efficiency and programming efficiency, and when chained together, constitute a coupled inverse system. We use numerical experiments to demonstrate that (1) the three-level coupled inverse problem is superior in terms of accuracy to a traditional decoupled inversion strategy; (2) it is able to simultaneously invert for parameters in empirical relationships such as the rock physics models; and (3) the inverted model can be used for reservoir performance prediction and reservoir management/optimization purposes.
78 - Lingchen Zhu , Entao Liu , 2017
Seismic data quality is vital to geophysical applications, so methods of data recovery, including denoising and interpolation, are common initial steps in the seismic data processing flow. We present a method to perform simultaneous interpolation and denoising, which is based on double-sparsity dictionary learning. This extends previous work that was for denoising only. The original double sparsity dictionary learning algorithm is modified to track the traces with missing data by defining a masking operator that is integrated into the sparse representation of the dictionary. A weighted low-rank approximation algorithm is adopted to handle the dictionary updating as a sparse recovery optimization problem constrained by the masking operator. Compared to traditional sparse transforms with fixed dictionaries that lack the ability to adapt to complex data structures, the double-sparsity dictionary learning method learns the signal adaptively from selected patches of the corrupted seismic data while preserving compact forward and inverse transform operators. Numerical experiments on synthetic seismic data indicate that this new method preserves more subtle features in the dataset without introducing pseudo-Gibbs artifacts when compared to other directional multiscale transform methods such as curvelets.
Seismic full-waveform inversion (FWI), which uses iterative methods to estimate high-resolution subsurface models from seismograms, is a powerful imaging technique in exploration geophysics. In recent years, the computational cost of FWI has grown exponentially due to the increasing size and resolution of seismic data. Moreover, it is a non-convex problem and can encounter local minima due to the limited accuracy of the initial velocity models or the absence of low frequencies in the measurements. To overcome these computational issues, we develop a multiscale data-driven FWI method based on fully convolutional networks (FCN). In preparing the training data, we first develop a real-time style transform method to create a large set of synthetic subsurface velocity models from natural images. We then develop two convolutional neural networks with encoder-decoder structure to reconstruct the low- and high-frequency components of the subsurface velocity models, separately. To validate the performance of our data-driven inversion method and the effectiveness of the synthesized training set, we compare it with conventional physics-based waveform inversion approaches using both synthetic and field data. These numerical results demonstrate that, once our model is fully trained, it can significantly reduce the computation time, and yield more accurate subsurface velocity models in comparison with conventional FWI.
155 - Fang Lu , Fa Wu , Peijun Hu 2016
Purpose Segmentation of the liver from abdominal computed tomography (CT) image is an essential step in some computer assisted clinical interventions, such as surgery planning for living donor liver transplant (LDLT), radiotherapy and volume measurement. In this work, we develop a deep learning algorithm with graph cut refinement to automatically segment liver in CT scans. Methods The proposed method consists of two main steps: (i) simultaneously liver detection and probabilistic segmentation using 3D convolutional neural networks (CNNs); (ii) accuracy refinement of initial segmentation with graph cut and the previously learned probability map. Results The proposed approach was validated on forty CT volumes taken from two public databases MICCAI-Sliver07 and 3Dircadb. For the MICCAI-Sliver07 test set, the calculated mean ratios of volumetric overlap error (VOE), relative volume difference (RVD), average symmetric surface distance (ASD), root mean square symmetric surface distance (RMSD) and maximum symmetric surface distance (MSD) are 5.9%, 2.7%, 0.91%, 1.88 mm, and 18.94 mm, respectively. In the case of 20 3Dircadb data, the calculated mean ratios of VOE, RVD, ASD, RMSD and MSD are 9.36%, 0.97%, 1.89%, 4.15 mm and 33.14 mm, respectively. Conclusion The proposed method is fully automatic without any user interaction. Quantitative results reveal that the proposed approach is efficient and accurate for hepatic volume estimation in a clinical setup. The high correlation between the automatic and manual references shows that the proposed method can be good enough to replace the time-consuming and non-reproducible manual segmentation method.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا