Do you want to publish a course? Click here

Automatic Seismic Salt Interpretation with Deep Convolutional Neural Networks

185   0   0.0 ( 0 )
 Added by Yu Zeng
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

One of the most crucial tasks in seismic reflection imaging is to identify the salt bodies with high precision. Traditionally, this is accomplished by visually picking the salt/sediment boundaries, which requires a great amount of manual work and may introduce systematic bias. With recent progress of deep learning algorithm and growing computational power, a great deal of efforts have been made to replace human effort with machine power in salt body interpretation. Currently, the method of Convolutional neural networks (CNN) is revolutionizing the computer vision field and has been a hot topic in the image analysis. In this paper, the benefits of CNN-based classification are demonstrated by using a state-of-art network structure U-Net, along with the residual learning framework ResNet, to delineate salt body with high precision. Network adjustments, including the Exponential Linear Units (ELU) activation function, the Lov{a}sz-Softmax loss function, and stratified $K$-fold cross-validation, have been deployed to further improve the prediction accuracy. The preliminary result using SEG Advanced Modeling (SEAM) data shows good agreement between the predicted salt body and manually interpreted salt body, especially in areas with weak reflections. This indicates the great potential of applying CNN for salt-related interpretations.



rate research

Read More

We present a content-based automatic music tagging algorithm using fully convolutional neural networks (FCNs). We evaluate different architectures consisting of 2D convolutional layers and subsampling layers only. In the experiments, we measure the AUC-ROC scores of the architectures with different complexities and input types using the MagnaTagATune dataset, where a 4-layer architecture shows state-of-the-art performance with mel-spectrogram input. Furthermore, we evaluated the performances of the architectures with varying the number of layers on a larger dataset (Million Song Dataset), and found that deeper models outperformed the 4-layer architecture. The experiments show that mel-spectrogram is an effective time-frequency representation for automatic tagging and that more complex models benefit from more training data.
Active faults release tectonic stress imposed by plate motion through a spectrum of slip modes, from slow, aseismic slip, to dynamic, seismic events. Slow earthquakes are often associated with tectonic tremor, non-impulsive signals that can easily be buried in seismic noise and go undetected. We present a new methodology aimed at improving the detection and location of tremors hidden within seismic noise. After identifying tremors with a classic convolutional neural network, we rely on neural network attribution to extract core tremor signatures and denoise input waveforms. We then use these cleaned waveforms to locate tremors with standard array-based techniques. We apply this method to the Cascadia subduction zone, where we identify tremor patches consistent with existing catalogs. In particular, we show that the cleaned signals resulting from the neural network attribution analysis correspond to a waveform traveling in the Earths crust and mantle at wavespeeds consistent with local estimates. This approach allows us to extract small signals hidden within the noise, and therefore to locate more tremors than in existing catalogs.
Small magnitude earthquakes are the most abundant but the most difficult to locate robustly and well due to their low amplitudes and high frequencies usually obscured by heterogeneous noise sources. They highlight crucial information about the stress state and the spatio-temporal behavior of fault systems during the earthquake cycle, therefore, its full characterization is then crucial for improving earthquake hazard assessment. Modern DL algorithms along with the increasing computational power are exploiting the continuously growing seismological databases, allowing scientists to improve the completeness for earthquake catalogs, systematically detecting smaller magnitude earthquakes and reducing the errors introduced mainly by human intervention. In this work, we introduce OKSP, a novel automatic earthquake detection pipeline for seismic monitoring in Costa Rica. Using Kabre supercomputer from the Costa Rica High Technology Center, we applied OKSP to the day before and the first 5 days following the Puerto Armuelles, M6.5, earthquake that occurred on 26 June, 2019, along the Costa Rica-Panama border and found 1100 more earthquakes previously unidentified by the Volcanological and Seismological Observatory of Costa Rica. From these events, a total of 23 earthquakes with magnitudes below 1.0 occurred a day to hours prior to the mainshock, shedding light about the rupture initiation and earthquake interaction leading to the occurrence of this productive seismic sequence. Our observations show that for the study period, the model was 100% exhaustive and 82% precise, resulting in an F1 score of 0.90. This effort represents the very first attempt for automatically detecting earthquakes in Costa Rica using deep learning methods and demonstrates that, in the near future, earthquake monitoring routines will be carried out entirely by AI algorithms.
Seismic wave propagation forms the basis for most aspects of seismological research, yet solving the wave equation is a major computational burden that inhibits the progress of research. This is exaspirated by the fact that new simulations must be performed when the velocity structure or source location is perturbed. Here, we explore a prototype framework for learning general solutions using a recently developed machine learning paradigm called Neural Operator. A trained Neural Operator can compute a solution in negligible time for any velocity structure or source location. We develop a scheme to train Neural Operators on an ensemble of simulations performed with random velocity models and source locations. As Neural Operators are grid-free, it is possible to evaluate solutions on higher resolution velocity models than trained on, providing additional computational efficiency. We illustrate the method with the 2D acoustic wave equation and demonstrate the methods applicability to seismic tomography, using reverse mode automatic differentiation to compute gradients of the wavefield with respect to the velocity structure. The developed procedure is nearly an order of magnitude faster than using conventional numerical methods for full waveform inversion.
Convolutional Neural Networks (CNNs) are effective models for reducing spectral variations and modeling spectral correlations in acoustic features for automatic speech recognition (ASR). Hybrid speech recognition systems incorporating CNNs with Hidden Markov Models/Gaussian Mixture Models (HMMs/GMMs) have achieved the state-of-the-art in various benchmarks. Meanwhile, Connectionist Temporal Classification (CTC) with Recurrent Neural Networks (RNNs), which is proposed for labeling unsegmented sequences, makes it feasible to train an end-to-end speech recognition system instead of hybrid settings. However, RNNs are computationally expensive and sometimes difficult to train. In this paper, inspired by the advantages of both CNNs and the CTC approach, we propose an end-to-end speech framework for sequence labeling, by combining hierarchical CNNs with CTC directly without recurrent connections. By evaluating the approach on the TIMIT phoneme recognition task, we show that the proposed model is not only computationally efficient, but also competitive with the existing baseline systems. Moreover, we argue that CNNs have the capability to model temporal correlations with appropriate context information.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا