Do you want to publish a course? Click here

Multiscale Data-driven Seismic Full-waveform Inversion with Field Data Study

138   0   0.0 ( 0 )
 Added by Shihang Feng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Seismic full-waveform inversion (FWI), which uses iterative methods to estimate high-resolution subsurface models from seismograms, is a powerful imaging technique in exploration geophysics. In recent years, the computational cost of FWI has grown exponentially due to the increasing size and resolution of seismic data. Moreover, it is a non-convex problem and can encounter local minima due to the limited accuracy of the initial velocity models or the absence of low frequencies in the measurements. To overcome these computational issues, we develop a multiscale data-driven FWI method based on fully convolutional networks (FCN). In preparing the training data, we first develop a real-time style transform method to create a large set of synthetic subsurface velocity models from natural images. We then develop two convolutional neural networks with encoder-decoder structure to reconstruct the low- and high-frequency components of the subsurface velocity models, separately. To validate the performance of our data-driven inversion method and the effectiveness of the synthesized training set, we compare it with conventional physics-based waveform inversion approaches using both synthetic and field data. These numerical results demonstrate that, once our model is fully trained, it can significantly reduce the computation time, and yield more accurate subsurface velocity models in comparison with conventional FWI.



rate research

Read More

Acoustic- and elastic-waveform inversion is an important and widely used method to reconstruct subsurface velocity image. Waveform inversion is a typical non-linear and ill-posed inverse problem. Existing physics-driven computational methods for solving waveform inversion suffer from the cycle skipping and local minima issues, and not to mention solving waveform inversion is computationally expensive. In recent years, data-driven methods become a promising way to solve the waveform inversion problem. However, most deep learning frameworks suffer from generalization and over-fitting issue. In this paper, we developed a real-time data-driven technique and we call it VelocityGAN, to accurately reconstruct subsurface velocities. Our VelocityGAN is built on a generative adversarial network (GAN) and trained end-to-end to learn a mapping function from the raw seismic waveform data to the velocity image. Different from other encoder-decoder based data-driven seismic waveform inversion approaches, our VelocityGAN learns regularization from data and further impose the regularization to the generator so that inversion accuracy is improved. We further develop a transfer learning strategy based on VelocityGAN to alleviate the generalization issue. A series of experiments are conducted on the synthetic seismic reflection data to evaluate the effectiveness, efficiency, and generalization of VelocityGAN. We not only compare it with existing physics-driven approaches and data-driven frameworks but also conduct several transfer learning experiments. The experiment results show that VelocityGAN achieves state-of-the-art performance among the baselines and can improve the generalization results to some extent.
Seismic full-waveform inversion (FWI) is a nonlinear computational imaging technique that can provide detailed estimates of subsurface geophysical properties. Solving the FWI problem can be challenging due to its ill-posedness and high computational cost. In this work, we develop a new hybrid computational approach to solve FWI that combines physics-based models with data-driven methodologies. In particular, we develop a data augmentation strategy that can not only improve the representativity of the training set but also incorporate important governing physics into the training process and therefore improve the inversion accuracy. To validate the performance, we apply our method to synthetic elastic seismic waveform data generated from a subsurface geologic model built on a carbon sequestration site at Kimberlina, California. We compare our physics-consistent data-driven inversion method to both purely physics-based and purely data-driven approaches and observe that our method yields higher accuracy and greater generalization ability.
167 - G. Vignoli , L. Zanzi 2006
Traveltime tomography is a very effective tool to reconstruct acoustic, seismic or electromagnetic wave speed distribution. To infer the velocity image of the medium from the measurements of first arrivals is a typical example of ill-posed problem. In the framework of Tikhonov regularization theory, in order to replace an ill-posed problem by a well-posed one and to get a unique and stable solution, a stabilizing functional (stabilizer) has to be introduced. The stabilizer selects the desired solution from a class of solutions with a specific physical and/or geometrical property; e.g., the existence of sharp boundaries separating media with different petrophysical parameters. Usually stabilizers based on maximum smoothness criteria are used during the inversion process; in these cases the solutions provide smooth images which, in many situations, do not describe the examined objects properly. Recently a new algorithm of direct minimization of the Tikhonov parametric functional with minimum support stabilizer has been introduced; it produces clear and focused images of targets with sharp boundaries. In this research we apply this new technique to real radar tomographic data and we compare the obtained result with the solution generated by the more traditional minimum norm stabilizer.
Deep learning and data-driven approaches have shown great potential in scientific domains. The promise of data-driven techniques relies on the availability of a large volume of high-quality training datasets. Due to the high cost of obtaining data through expensive physical experiments, instruments, and simulations, data augmentation techniques for scientific applications have emerged as a new direction for obtaining scientific data recently. However, existing data augmentation techniques originating from computer vision, yield physically unacceptable data samples that are not helpful for the domain problems that we are interested in. In this paper, we develop new physics-informed data augmentation techniques based on convolutional neural networks. Specifically, our generative models leverage different physics knowledge (such as governing equations, observable perception, and physics phenomena) to improve the quality of the synthetic data. To validate the effectiveness of our data augmentation techniques, we apply them to solve a subsurface seismic full-waveform inversion using simulated CO$_2$ leakage data. Our interest is to invert for subsurface velocity models associated with very small CO$_2$ leakage. We validate the performance of our methods using comprehensive numerical tests. Via comparison and analysis, we show that data-driven seismic imaging can be significantly enhanced by using our physics-informed data augmentation techniques. Particularly, the imaging quality has been improved by 15% in test scenarios of general-sized leakage and 17% in small-sized leakage when using an augmented training set obtained with our techniques.
The Hessian matrix plays an important role in correct interpretation of the multiple scattered wave fields inside the FWI frame work. Due to the high computational costs, the computation of the Hessian matrix is not feasible. Consequently, FWI produces overburden related artifacts inside the target zone model, due to the lack of the exact Hessian matrix. We have shown here that Marchenko-based target-oriented Full Waveform Inversion can compensate the need of Hessian matrix inversion by reducing the non-linearity due to overburden effects. This is achieved by exploiting Marchenko-based target replacement to remove the overburden response and its interactions with the target zone from residuals and inserting the response of the updated target zone into the response of the entire medium. We have also shown that this method is more robust with respect to prior information than the standard gradient FWI. Similarly to standard Marchenko imaging, the proposed method only requires knowledge of the direct arrival time from a focusing point to the surface and the reflection response of the medium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا