No Arabic abstract
This paper studies the problem of distributed beam scheduling for 5G millimeter-Wave (mm-Wave) cellular networks where base stations (BSs) belonging to different operators share the same spectrum without centralized coordination among them. Our goal is to design efficient distributed scheduling algorithms to maximize the network utility, which is a function of the achieved throughput by the user equipment (UEs), subject to the average and instantaneous power consumption constraints of the BSs. We propose a Media Access Control (MAC) and a power allocation/adaptation mechanism utilizing the Lyapunov stochastic optimization framework and non-cooperative games. In particular, we first decompose the original utility maximization problem into two sub-optimization problems for each time frame, which are a convex optimization problem and a non-convex optimization problem, respectively. By formulating the distributed scheduling problem as a non-cooperative game where each BS is a player attempting to optimize its own utility, we provide a distributed solution to the non-convex sub-optimization problem via finding the Nash Equilibrium (NE) of the game whose weights are determined optimally by the Lyapunov optimization framework. Finally, we conduct simulation under various network settings to show the effectiveness of the proposed game-based beam scheduling algorithm in comparison to that of several reference schemes.
Based on the distinguishing features of multi-tier millimeter wave (mmWave) networks such as different transmit powers, different directivity gains from directional beamforming alignment and path loss laws for line-of-sight (LOS) and non-line-of-sight (NLOS) links, we introduce a normalization model to simplify the analysis of multi-tier mmWave cellular networks. The highlight of the model is that we convert a multi-tier mmWave cellular network into a single-tier mmWave network, where all the base stations (BSs) have the same normalized transmit power 1 and the densities of BSs scaled by LOS or NLOS scaling factors respectively follow piecewise constant function which has multiple demarcation points. On this basis, expressions for computing the coverage probability are obtained in general case with beamforming alignment errors and the special case with perfect beamforming alignment in the communication. According to corresponding numerical exploration, we conclude that the normalization model for multi-tier mmWave cellular networks fully meets requirements of network performance analysis, and it is simpler and clearer than the untransformed model. Besides, an unexpected but sensible finding is that there is an optimal beam width that maximizes coverage probability in the case with beamforming alignment errors.
Hybrid analog and digital BeamForming (HBF) is one of the enabling transceiver technologies for millimeter Wave (mmWave) Multiple Input Multiple Output (MIMO) systems. This technology offers highly directional communication, which is able to confront the intrinsic characteristics of mmWave signal propagation. However, the small coherence time in mmWave systems, especially under mobility conditions, renders efficient Beam Management (BM) in standalone mmWave communication a very difficult task. In this paper, we consider HBF transceivers with planar antenna panels and design a multi-level beam codebook for the analog beamformer comprising flat top beams with variable widths. These beams exhibit an almost constant array gain for the whole desired angle width, thereby facilitating efficient hierarchical BM. Focusing on the uplink communication, we present a novel beam training algorithm with dynamic beam ordering, which is suitable for the stringent latency requirements of the latest mmWave standard discussions. Our simulation results showcase the latency performance improvement and received signal-to-noise ratio with different variations of the proposed scheme over the optimum beam training scheme based on exhaustive narrow beam search.
In this paper, we investigate the combination of non-orthogonal multiple access and millimeter-Wave communications (mmWave-NOMA). A downlink cellular system is considered, where an analog phased array is equipped at both the base station and users. A joint Tx-Rx beamforming and power allocation problem is formulated to maximize the achievable sum rate (ASR) subject to a minimum rate constraint for each user. As the problem is non-convex, we propose a sub-optimal solution with three stages. In the first stage, the optimal power allocation with a closed form is obtained for an arbitrary fixed Tx-Rx beamforming. In the second stage, the optimal Rx beamforming with a closed form is designed for an arbitrary fixed Tx beamforming. In the third stage, the original problem is reduced to a Tx beamforming problem by using the previous results, and a boundary-compressed particle swarm optimization (BC-PSO) algorithm is proposed to obtain a sub-optimal solution. Extensive performance evaluations are conducted to verify the rational of the proposed solution, and the results show that the proposed sub-optimal solution can achieve a near-upper-bound performance in terms of ASR, which is significantly improved compared with those of the state-of-the-art schemes and the conventional mmWave orthogonal multiple access (mmWave-OMA) system.
In one of the several manifestations, the future cellular networks are required to accommodate a massive number of devices; several orders of magnitude compared to todays networks. At the same time, the future cellular networks will have to fulfill stringent latency constraints. To that end, one problem that is posed as a potential showstopper is extreme congestion for requesting uplink scheduling over the physical random access channel (PRACH). Indeed, such congestion drags along scheduling delay problems. In this paper, the use of self-organized device-to-device (D2D) clustering is advocated for mitigating PRACH congestion. To this end, the paper proposes two D2D clustering schemes, namely; Random-Based Clustering (RBC) and Channel-Gain-Based Clustering (CGBC). Accordingly, this paper sheds light on random access within the proposed D2D clustering schemes and presents a case study based on a stochastic geometry framework. For the sake of objective evaluation, the D2D clustering is benchmarked by the conventional scheduling request procedure. Accordingly, the paper offers insights into useful scenarios that minimize the scheduling delay for each clustering scheme. Finally, the paper discusses the implementation algorithm and some potential implementation issues and remedies.
We propose a novel analytical framework for evaluating the coverage performance of a millimeter wave (mmWave) cellular network where idle user equipments (UEs) act as relays. In this network, the base station (BS) adopts either the direct mode to transmit to the destination UE, or the relay mode if the direct mode fails, where the BS transmits to the relay UE and then the relay UE transmits to the destination UE. To address the drastic rotational movements of destination UEs in practice, we propose to adopt selection combining at destination UEs. New expression is derived for the signal-to-interference-plus-noise ratio (SINR) coverage probability of the network. Using numerical results, we first demonstrate the accuracy of our new expression. Then we show that ignoring spatial correlation, which has been commonly adopted in the literature, leads to severe overestimation of the SINR coverage probability. Furthermore, we show that introducing relays into a mmWave cellular network vastly improves the coverage performance. In addition, we show that the optimal BS density maximizing the SINR coverage probability can be determined by using our analysis.