Do you want to publish a course? Click here

Regularized Attentive Capsule Network for Overlapped Relation Extraction

86   0   0.0 ( 0 )
 Added by Tianyi Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Distantly supervised relation extraction has been widely applied in knowledge base construction due to its less requirement of human efforts. However, the automatically established training datasets in distant supervision contain low-quality instances with noisy words and overlapped relations, introducing great challenges to the accurate extraction of relations. To address this problem, we propose a novel Regularized Attentive Capsule Network (RA-CapNet) to better identify highly overlapped relations in each informal sentence. To discover multiple relation features in an instance, we embed multi-head attention into the capsule network as the low-level capsules, where the subtraction of two entities acts as a new form of relation query to select salient features regardless of their positions. To further discriminate overlapped relation features, we devise disagreement regularization to explicitly encourage the diversity among both multiple attention heads and low-level capsules. Extensive experiments conducted on widely used datasets show that our model achieves significant improvements in relation extraction.

rate research

Read More

To disclose overlapped multiple relations from a sentence still keeps challenging. Most current works in terms of neural models inconveniently assuming that each sentence is explicitly mapped to a relation label, cannot handle multiple relations properly as the overlapped features of the relations are either ignored or very difficult to identify. To tackle with the new issue, we propose a novel approach for multi-labeled relation extraction with capsule network which acts considerably better than current convolutional or recurrent net in identifying the highly overlapped relations within an individual sentence. To better cluster the features and precisely extract the relations, we further devise attention-based routing algorithm and sliding-margin loss function, and embed them into our capsule network. The experimental results show that the proposed approach can indeed extract the highly overlapped features and achieve significant performance improvement for relation extraction comparing to the state-of-the-art works.
The goal of dialogue relation extraction (DRE) is to identify the relation between two entities in a given dialogue. During conversations, speakers may expose their relations to certain entities by some clues, such evidences called triggers. However, none of the existing work on DRE tried to detect triggers and leverage the information for enhancing the performance. This paper proposes TREND, a multi-tasking BERT-based model which learns to identify triggers for improving relation extraction. The experimental results show that the proposed method achieves the state-of-the-art on the benchmark datasets.
111 - Rujun Han , I-Hung Hsu , Mu Yang 2019
We propose a novel deep structured learning framework for event temporal relation extraction. The model consists of 1) a recurrent neural network (RNN) to learn scoring functions for pair-wise relations, and 2) a structured support vector machine (SSVM) to make joint predictions. The neural network automatically learns representations that account for long-term contexts to provide robust features for the structured model, while the SSVM incorporates domain knowledge such as transitive closure of temporal relations as constraints to make better globally consistent decisions. By jointly training the two components, our model combines the benefits of both data-driven learning and knowledge exploitation. Experimental results on three high-quality event temporal relation datasets (TCR, MATRES, and TB-Dense) demonstrate that incorporated with pre-trained contextualized embeddings, the proposed model achieves significantly better performances than the state-of-the-art methods on all three datasets. We also provide thorough ablation studies to investigate our model.
Document-level relation extraction aims to discover relations between entities across a whole document. How to build the dependency of entities from different sentences in a document remains to be a great challenge. Current approaches either leverage syntactic trees to construct document-level graphs or aggregate inference information from different sentences. In this paper, we build cross-sentence dependencies by inferring compositional relations between inter-sentence mentions. Adopting aggressive linking strategy, intermediate relations are reasoned on the document-level graphs by mention convolution. We further notice the generalization problem of NA instances, which is caused by incomplete annotation and worsened by fully-connected mention pairs. An improved ranking loss is proposed to attend this problem. Experiments show the connections between different mentions are crucial to document-level relation extraction, which enables the model to extract more meaningful higher-level compositional relations.
In joint entity and relation extraction, existing work either sequentially encode task-specific features, leading to an imbalance in inter-task feature interaction where features extracted later have no direct contact with those that come first. Or they encode entity features and relation features in a parallel manner, meaning that feature representation learning for each task is largely independent of each other except for input sharing. We propose a partition filter network to model two-way interaction between tasks properly, where feature encoding is decomposed into two steps: partition and filter. In our encoder, we leverage two gates: entity and relation gate, to segment neurons into two task partitions and one shared partition. The shared partition represents inter-task information valuable to both tasks and is evenly shared across two tasks to ensure proper two-way interaction. The task partitions represent intra-task information and are formed through concerted efforts of both gates, making sure that encoding of task-specific features is dependent upon each other. Experiment results on six public datasets show that our model performs significantly better than previous approaches. In addition, contrary to what previous work has claimed, our auxiliary experiments suggest that relation prediction is contributory to named entity prediction in a non-negligible way. The source code can be found at https://github.com/Coopercoppers/PFN.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا