Do you want to publish a course? Click here

A Partition Filter Network for Joint Entity and Relation Extraction

143   0   0.0 ( 0 )
 Added by Zhiheng Yan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In joint entity and relation extraction, existing work either sequentially encode task-specific features, leading to an imbalance in inter-task feature interaction where features extracted later have no direct contact with those that come first. Or they encode entity features and relation features in a parallel manner, meaning that feature representation learning for each task is largely independent of each other except for input sharing. We propose a partition filter network to model two-way interaction between tasks properly, where feature encoding is decomposed into two steps: partition and filter. In our encoder, we leverage two gates: entity and relation gate, to segment neurons into two task partitions and one shared partition. The shared partition represents inter-task information valuable to both tasks and is evenly shared across two tasks to ensure proper two-way interaction. The task partitions represent intra-task information and are formed through concerted efforts of both gates, making sure that encoding of task-specific features is dependent upon each other. Experiment results on six public datasets show that our model performs significantly better than previous approaches. In addition, contrary to what previous work has claimed, our auxiliary experiments suggest that relation prediction is contributory to named entity prediction in a non-negligible way. The source code can be found at https://github.com/Coopercoppers/PFN.



rate research

Read More

Joint entity and relation extraction framework constructs a unified model to perform entity recognition and relation extraction simultaneously, which can exploit the dependency between the two tasks to mitigate the error propagation problem suffered by the pipeline model. Current efforts on joint entity and relation extraction focus on enhancing the interaction between entity recognition and relation extraction through parameter sharing, joint decoding, or other ad-hoc tricks (e.g., modeled as a semi-Markov decision process, cast as a multi-round reading comprehension task). However, there are still two issues on the table. First, the interaction utilized by most methods is still weak and uni-directional, which is unable to model the mutual dependency between the two tasks. Second, relation triggers are ignored by most methods, which can help explain why humans would extract a relation in the sentence. Theyre essential for relation extraction but overlooked. To this end, we present a Trigger-Sense Memory Flow Framework (TriMF) for joint entity and relation extraction. We build a memory module to remember category representations learned in entity recognition and relation extraction tasks. And based on it, we design a multi-level memory flow attention mechanism to enhance the bi-directional interaction between entity recognition and relation extraction. Moreover, without any human annotations, our model can enhance relation trigger information in a sentence through a trigger sensor module, which improves the model performance and makes model predictions with better interpretation. Experiment results show that our proposed framework achieves state-of-the-art results by improves the relation F1 to 52.44% (+3.2%) on SciERC, 66.49% (+4.9%) on ACE05, 72.35% (+0.6%) on CoNLL04 and 80.66% (+2.3%) on ADE.
Extracting relational triples from texts is a fundamental task in knowledge graph construction. The popular way of existing methods is to jointly extract entities and relations using a single model, which often suffers from the overlapping triple problem. That is, there are multiple relational triples that share the same entities within one sentence. In this work, we propose an effective cascade dual-decoder approach to extract overlapping relational triples, which includes a text-specific relation decoder and a relation-corresponded entity decoder. Our approach is straightforward: the text-specific relation decoder detects relations from a sentence according to its text semantics and treats them as extra features to guide the entity extraction; for each extracted relation, which is with trainable embedding, the relation-corresponded entity decoder detects the corresponding head and tail entities using a span-based tagging scheme. In this way, the overlapping triple problem is tackled naturally. Experiments on two public datasets demonstrate that our proposed approach outperforms state-of-the-art methods and achieves better F1 scores under the strict evaluation metric. Our implementation is available at https://github.com/prastunlp/DualDec.
197 - Tapas Nayak , Hwee Tou Ng 2019
A relation tuple consists of two entities and the relation between them, and often such tuples are found in unstructured text. There may be multiple relation tuples present in a text and they may share one or both entities among them. Extracting such relation tuples from a sentence is a difficult task and sharing of entities or overlapping entities among the tuples makes it more challenging. Most prior work adopted a pipeline approach where entities were identified first followed by finding the relations among them, thus missing the interaction among the relation tuples in a sentence. In this paper, we propose two approaches to use encoder-decoder architecture for jointly extracting entities and relations. In the first approach, we propose a representation scheme for relation tuples which enables the decoder to generate one word at a time like machine translation models and still finds all the tuples present in a sentence with full entity names of different length and with overlapping entities. Next, we propose a pointer network-based decoding approach where an entire tuple is generated at every time step. Experiments on the publicly available New York Times corpus show that our proposed approaches outperform previous work and achieve significantly higher F1 scores.
211 - Tapas Nayak , Hwee Tou Ng 2021
Distantly supervised datasets for relation extraction mostly focus on sentence-level extraction, and they cover very few relations. In this work, we propose cross-document relation extraction, where the two entities of a relation tuple appear in two different documents that are connected via a chain of common entities. Following this idea, we create a dataset for two-hop relation extraction, where each chain contains exactly two documents. Our proposed dataset covers a higher number of relations than the publicly available sentence-level datasets. We also propose a hierarchical entity graph convolutional network (HEGCN) model for this task that improves performance by 1.1% F1 score on our two-hop relation extraction dataset, compared to some strong neural baselines.
We introduce SpERT, an attention model for span-based joint entity and relation extraction. Our key contribution is a light-weight reasoning on BERT embeddings, which features entity recognition and filtering, as well as relation classification with a localized, marker-free context representation. The model is trained using strong within-sentence negative samples, which are efficiently extracted in a single BERT pass. These aspects facilitate a search over all spans in the sentence. In ablation studies, we demonstrate the benefits of pre-training, strong negative sampling and localized context. Our model outperforms prior work by up to 2.6% F1 score on several datasets for joint entity and relation extraction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا