Do you want to publish a course? Click here

Axial Magnetoelectric Effect in Dirac semimetals

76   0   0.0 ( 0 )
 Added by Long Liang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a mechanism to generate a static magnetization via {em axial magnetoelectric effect} (AMEE). Magnetization ${bf M} sim {bf E}_5(omega)times {bf E}_5^{*}(omega)$ appears as a result of the transfer of the angular momentum of the axial electric field ${bf E}_5(t)$ into the magnetic moment in Dirac and Weyl semimetals. We point out similarities and differences between the proposed AMEE and a conventional inverse Faraday effect (IFE). As an example, we estimated the AMEE generated by circularly polarized acoustic waves and find it to be on the scale of microgauss for gigahertz frequency sound. In contrast to a conventional IFE, magnetization rises linearly at small frequencies and fixed sound intensity as well as demonstrates a nonmonotonic peak behavior for the AMEE. The effect provides a way to investigate unusual axial electromagnetic fields via conventional magnetometry techniques.



rate research

Read More

We have studied helicity dependent photocurrent (HDP) in Bi-based Dirac semimetal thin films. HDP increases with film thickness before it saturates, changes its sign when the majority carrier type is changed from electrons to holes and takes a sharp peak when the Fermi level lies near the charge neutrality point. These results suggest that irradiation of circularly polarized light to Dirac semimetals induces an effective magnetic field that aligns the carrier spin along the light spin angular momentum and generates a spin current along the film normal. The effective magnetic field is estimated to be orders of magnitude larger than that caused by the inverse Faraday effect (IFE) in typical transition metals. We consider the small effective mass and the large $g$-factor, characteristics of Dirac semimetals with strong spin orbit coupling, are responsible for the giant IFE, opening pathways to develop systems with strong light-spin coupling.
Weyl semimetals expand research on topologically protected transport by adding bulk Berry monopoles with linearly dispersing electronic states and topologically robust, gapless surface Fermi arcs terminating on bulk node projections. Here, we show how the Nernst effect, combining entropy with charge transport, gives a unique signature for the presence of Dirac bands. The Nernst thermopower of NbP (maximum of 800 microV K-1 at 9 T, 109 K) exceeds its conventional thermopower by a hundredfold and is significantly larger than the thermopower of traditional thermoelectric materials. The Nernst effect has a pronounced maximum near T_M=90 +/- 20 K=mu_0/kB (mu_0 is chemical potential at T=0 K). A self-consistent theory without adjustable parameters shows that this results from electrochemical potential pinning to the Weyl point energy at T>=TM, driven by charge neutrality and Dirac band symmetry. Temperature and field dependences of the Nernst effect, an even function of the charge polarity, result from the intrinsically bipolar nature of the Weyl fermions. Through this study, we offer an understanding of the temperature dependence of the position of the electrochemical potential vis-a-vis the Weyl point, and we show a direct connection between topology and the Nernst effect, a potentially robust experimental tool for investigating topological states and the chiral anomaly.
We propose an unconventional type of Hall effect in a topological Dirac semimetal with ferromagnetic electrodes. The topological Dirac semimetal itself has time-reversal symmetry, whereas attached ferromagnetic electrodes break it, causing the large Hall response. This induced Hall effect is a characteristic of the helical surface/edge states that arise in topological materials, such as topological Dirac semimetals or quantum spin Hall insulators. We compute the Hall conductance/resistance and the Hall angle by using a lattice model with four-terminal geometry. For topological Dirac semimetals with four electrodes, the induced Hall effect occurs whether the current electrodes or the voltage electrodes are ferromagnetic. When the spins in electrodes are almost fully polarized, the Hall angle becomes as large as that of quantum Hall states or ideal magnetic Weyl semimetals. We show the robustness of the induced Hall effect against impurities and also discuss the spin injection and spin decay problems. This Hall response can be used to detect whether the magnetizations of the two ferromagnetic electrodes are parallel or antiparallel.
We show that Weyl semimetals exhibit a mixed axial-torsional anomaly in the presence of axial torsion, a concept exclusive of these materials with no known natural fundamental interpretation in terms of the geometry of spacetime. This anomaly implies a nonconservation of the axial current---the difference in current of left- and right-handed chiral fermions---when the torsion of the spacetime in which the Weyl fermions move couples with opposite sign to different chiralities. The anomaly is activated by driving transverse sound waves through a Weyl semimetal with a spatially varying tilted dispersion, which can be engineered by applying strain. This leads to sizable alternating current in presence of a magnetic field that provides a clear-cut experimental signature of our predictions.
In addition to the well known chiral anomaly, Dirac semimetals have been argued to exhibit mirror anomaly, close analogue to the parity anomaly of ($2+1$)-dimensional massive Dirac fermions. The observable response of such anomaly is manifested in a singular step-like anomalous Hall response across the mirror-symmetric plane in the presence of a magnetic field. Although this result seems to be valid in type-II Dirac semimetals (strictly speaking, in the linearized theory), we find that type-I Dirac semimetals do not possess such an anomaly in anomalous Hall response even at the level of the linearized theory. In particular, we show that the anomalous Hall response continuously approaches zero as one approaches the mirror symmetric angle in a type-I Dirac semimetal as opposed to the singular Hall response in a type-II Dirac semimetal. Moreover, we show that, under certain condition, the anomalous Hall response may vanish in a linearized type-I Dirac semimetal, even in the presence of time reversal symmetry breaking.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا