Do you want to publish a course? Click here

Simulating the Coronal Evolution of Bipolar Active Regions to Investigate the Formation of Flux Ropes

241   0   0.0 ( 0 )
 Added by Stephanie Yardley
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The coronal magnetic field evolution of 20 bipolar active regions (ARs) is simulated from their emergence to decay using the time-dependent nonlinear force-free field method of Mackay et al. A time sequence of cleaned photospheric line-of-sight magnetograms, that covers the entire evolution of each AR, is used to drive the simulation. A comparison of the simulated coronal magnetic field with the 171 and 193 A observations obtained by the Solar Dynamics Observatory (SDO)/ Atmospheric Imaging Assembly (AIA), is made for each AR by manual inspection. The results show that it is possible to reproduce the evolution of the main coronal features such as small- and large-scale coronal loops, filaments and sheared structures for 80% of the ARs. Varying the boundary and initial conditions, along with the addition of physical effects such as Ohmic diffusion, hyperdiffusion and a horizontal magnetic field injection at the photosphere, improves the match between the observations and simulated coronal evolution by 20%. The simulations were able to reproduce the build-up to eruption for 50% of the observed eruptions associated with the ARs. The mean unsigned time difference between the eruptions occurring in the observations compared to the time of eruption onset in the simulations was found to be ~5 hrs. The simulations were particularly successful in capturing the build-up to eruption for all four eruptions that originated from the internal polarity inversion line of the ARs. The technique was less successful in reproducing the onset of eruptions that originated from the periphery of ARs and large-scale coronal structures. For these cases global, rather than local, nonlinear force-free field models must be used. While the technique has shown some success, eruptions that occur in quick succession are difficult to reproduce by this method and future iterations of the model need to address this.



rate research

Read More

The physical processes or trigger mechanisms that lead to the eruption of coronal mass ejections (CMEs), the largest eruptive phenomenon in the heliosphere, are still undetermined. Low-altitude magnetic reconnection associated with flux cancellation appears to play an important role in CME occurrence as it can form an eruptive configuration and reduce the magnetic flux that contributes to the overlying, stabilising field. We conduct the first comprehensive study of 20 small bipolar active regions in order to probe the role of flux cancellation as an eruption trigger mechanism. We categorise eruptions from the bipolar regions into three types related to location and find that the type of eruption produced depends on the evolutionary stage of the active region. In addition we find that active regions that form eruptive structures by flux cancellation (low-altitude reconnection) had, on average, lower flux cancellation rates than the active region sample as a whole. Therefore, while flux cancellation plays a key role, by itself it is insufficient for the production of an eruption. The results support that although flux cancellation in a sheared arcade may be able to build an eruptive configuration, a successful eruption depends upon the removal of sufficient overlying and stabilising field. Convergence of the bipole polarities also appears to be present in regions that produce an eruption. These findings have important implications for understanding the physical processes that occur on our Sun in relation to CMEs and for space weather forecasting.
We present results from 3D magnetohydrodynamic (MHD) simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain ($sim$ 36 Mm above the surface). We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include: surface shearing and rotational motions; quadrupolar geometry above the surface; central sheared arcades reconnecting with oppositely orientated overlying dipole fields; the formation of coronal flux ropes underlying potential coronal field; and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as magnetic breakout, are operating during the emergence of new active regions.
Investigations of the dynamics of the hot coronal plasma are crucial for understanding various space weather phenomena and making in-depth analyzes of the global heating of the solar corona. We present here numerical simulations of observations of siphon flows along loops (simple semi-circular flux ropes) to demonstrate the capabilities of the Solar Line Emission Dopplerometer (SLED), a new instrument under construction for imaging spectroscopy. It is based on the Multi-channel Subtractive Double Pass (MSDP) technique, which combines the advantages of filters and slit spectrographs. SLED will observe coronal structures in the forbidden lines of FeX 637.4 nm and FeXIV 530.3 nm, and will measure Doppler shifts up to 150 km/s at high precision (50 m/s) and cadence (1 Hz). It is optimized for studies of the dynamics of fast evolving events such as flares or Coronal Mass Ejections (CMEs), as well as for the detection of high-frequency waves. Observations will be performed with the coronagraph at Lomnicky Stit Observatory (LSO), and will also occur during total solar eclipses as SLED is a portable instrument.
111 - A. R. Yeates 2020
We investigate how representing active regions with bipolar magnetic regions (BMRs) affects the end-of-cycle polar field predicted by the surface flux transport model. Our study is based on a new database of BMRs derived from the SDO/HMI active region patch data between 2010 and 2020. An automated code is developed for fitting each active region patch with a BMR, matching both the magnetic flux and axial dipole moment of the region and removing repeat observations of the same region. By comparing the predicted evolution of each of the 1090 BMRs with the predicted evolution of their original active region patches, we show that the bipolar approximation leads to a 24% overestimate of the net axial dipole moment, given the same flow parameters. This is caused by neglecting the more complex multipolar and/or asymmetric magnetic structures of many of the real active regions, and may explain why previous flux transport models had to reduce BMR tilt angles to obtain realistic polar fields. Our BMR database and the Python code to extract it are freely available.
66 - C. Xing , X. Cheng , 2020
Coronal mass ejections (CMEs) are large-scale explosions of the coronal magnetic field. It is believed that magnetic reconnection significantly builds up the core structure of CMEs, a magnetic flux rope, during the eruption. However, the quantitative evolution of the flux rope, particularly its toroidal flux, is still unclear. In this paper, we study the evolution of the toroidal flux of the CME flux rope for four events. The toroidal flux is estimated as the magnetic flux in the footpoint region of the flux rope, which is identified by a method that simultaneously takes the coronal dimming and the hook of the flare ribbon into account. We find that the toroidal flux of the CME flux rope for all four events shows a two-phase evolution: a rapid increasing phase followed by a decreasing phase. We further compare the evolution of the toroidal flux with that of the Geostationary Operational Environmental Satellites soft X-ray flux and find that they are basically synchronous in time, except that the peak of the former is somewhat delayed. The results suggest that the toroidal flux of the CME flux rope may be first quickly built up by the reconnection mainly taking place in the sheared overlying field and then reduced by the reconnection among the twisted field lines within the flux rope, as enlightened by a recent 3D magnetohydrodynamic simulation of CMEs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا