Do you want to publish a course? Click here

How good is the bipolar approximation of active regions for surface flux transport?

112   0   0.0 ( 0 )
 Added by Anthony Yeates
 Publication date 2020
  fields Physics
and research's language is English
 Authors A. R. Yeates




Ask ChatGPT about the research

We investigate how representing active regions with bipolar magnetic regions (BMRs) affects the end-of-cycle polar field predicted by the surface flux transport model. Our study is based on a new database of BMRs derived from the SDO/HMI active region patch data between 2010 and 2020. An automated code is developed for fitting each active region patch with a BMR, matching both the magnetic flux and axial dipole moment of the region and removing repeat observations of the same region. By comparing the predicted evolution of each of the 1090 BMRs with the predicted evolution of their original active region patches, we show that the bipolar approximation leads to a 24% overestimate of the net axial dipole moment, given the same flow parameters. This is caused by neglecting the more complex multipolar and/or asymmetric magnetic structures of many of the real active regions, and may explain why previous flux transport models had to reduce BMR tilt angles to obtain realistic polar fields. Our BMR database and the Python code to extract it are freely available.



rate research

Read More

The physical processes or trigger mechanisms that lead to the eruption of coronal mass ejections (CMEs), the largest eruptive phenomenon in the heliosphere, are still undetermined. Low-altitude magnetic reconnection associated with flux cancellation appears to play an important role in CME occurrence as it can form an eruptive configuration and reduce the magnetic flux that contributes to the overlying, stabilising field. We conduct the first comprehensive study of 20 small bipolar active regions in order to probe the role of flux cancellation as an eruption trigger mechanism. We categorise eruptions from the bipolar regions into three types related to location and find that the type of eruption produced depends on the evolutionary stage of the active region. In addition we find that active regions that form eruptive structures by flux cancellation (low-altitude reconnection) had, on average, lower flux cancellation rates than the active region sample as a whole. Therefore, while flux cancellation plays a key role, by itself it is insufficient for the production of an eruption. The results support that although flux cancellation in a sheared arcade may be able to build an eruptive configuration, a successful eruption depends upon the removal of sufficient overlying and stabilising field. Convergence of the bipole polarities also appears to be present in regions that produce an eruption. These findings have important implications for understanding the physical processes that occur on our Sun in relation to CMEs and for space weather forecasting.
The coronal magnetic field evolution of 20 bipolar active regions (ARs) is simulated from their emergence to decay using the time-dependent nonlinear force-free field method of Mackay et al. A time sequence of cleaned photospheric line-of-sight magnetograms, that covers the entire evolution of each AR, is used to drive the simulation. A comparison of the simulated coronal magnetic field with the 171 and 193 A observations obtained by the Solar Dynamics Observatory (SDO)/ Atmospheric Imaging Assembly (AIA), is made for each AR by manual inspection. The results show that it is possible to reproduce the evolution of the main coronal features such as small- and large-scale coronal loops, filaments and sheared structures for 80% of the ARs. Varying the boundary and initial conditions, along with the addition of physical effects such as Ohmic diffusion, hyperdiffusion and a horizontal magnetic field injection at the photosphere, improves the match between the observations and simulated coronal evolution by 20%. The simulations were able to reproduce the build-up to eruption for 50% of the observed eruptions associated with the ARs. The mean unsigned time difference between the eruptions occurring in the observations compared to the time of eruption onset in the simulations was found to be ~5 hrs. The simulations were particularly successful in capturing the build-up to eruption for all four eruptions that originated from the internal polarity inversion line of the ARs. The technique was less successful in reproducing the onset of eruptions that originated from the periphery of ARs and large-scale coronal structures. For these cases global, rather than local, nonlinear force-free field models must be used. While the technique has shown some success, eruptions that occur in quick succession are difficult to reproduce by this method and future iterations of the model need to address this.
With multiple vantage points around the Sun, STEREO and SDO imaging observations provide a unique opportunity to view the solar surface continuously. We use He II 304 A data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport (AFT) model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active regions magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 AA images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.
133 - F. Giannattasio 2012
The velocity field in the lower solar atmosphere undergoes strong interactions with magnetic fields. Many authors have pointed out that power is reduced by a factor between two and three within magnetic regions, depending on frequency, depth, the radius and the magnetic strength of the flux tube. Many mechanisms have been proposed to explain the observations. In this work, SDO dopplergrams and magnetograms of 12 bipolar active regions ($beta$ARs) at a 45 second cadence, are used to investigate the relation between velocity fluctuations and magnetic fields. We show that there is an asymmetry within $beta$ARs, with the velocity oscillation amplitude being more suppressed in the leading polarities compared to the trailing polarities. Also, the strongest magnetic fields do not completely suppress the five-minute oscillation amplitude, neither in the spot innermost umbrae.
The magnetic polarities of bipolar active regions (ARs) exhibit elongations in line-of-sight magnetograms during their emergence. These elongations are referred to as magnetic tongues and attributed to the presence of twist in the emerging magnetic flux-ropes (FRs) that form ARs. The presence of magnetic tongues affects the measurement of any AR characteristic that depends on its magnetic flux distribution. The AR tilt-angle is one of them. We aim to develop a method to isolate and remove the flux associated with the tongues to determine the AR tilt-angle with as much precision as possible. As a first approach, we used a simple emergence model of a FR. This allowed us to develop and test our aim based on a method to remove the effects of magnetic tongues. Then, using the experience gained from the analysis of the model, we applied our method to photospheric observations of bipolar ARs that show clear magnetic tongues. Using the developed procedure on the FR model, we can reduce the deviation in the tilt estimation by more than 60%. Next we illustrate the performance of the method with four examples of bipolar ARs selected for their large magnetic tongues. The new method efficiently removes the spurious rotation of the bipole. This correction is mostly independent of the method input parameters and significant since it is larger than all the estimated tilt errors. We have developed a method to isolate the magnetic flux associated with the FR core during the emergence of bipolar ARs. This allows us to compute the AR tilt-angle and its evolution as precisely as possible. We suggest that the high dispersion observed in the determination of AR tilt-angles in studies that massively compute them from line-of sight magnetograms can be partly due to the existence of magnetic tongues whose presence is not sufficiently acknowledged.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا